
	

1
	

Project 3
IceMan

For questions about this project, talk to your teammate.

Part 1: 11:59 PM, Friday, May 17
Part 2: 11:59 PM, Friday, May 31

WHEN IN DOUBT ABOUT A REQUIREMENT, YOU WILL NEVER LOSE CREDIT

IF YOUR SOLUTION WORKS THE SAME AS OUR POSTED SAMPLE,
SO PLEASE DO NOT ASK ABOUT ITEMS WHERE YOU CAN DETERMINE THE

PROPER BEHAVIOR ON YOUR OWN FROM OUR SAMPLE!

BACK UP YOUR CODE REGULARLY TO AN EXTERNAL TARGET LIKE A
FLASH DRIVE OR BITBUCKET.COM

	

2
	

Table of Contents

Introduction	..	4	

Game	Details	...	5	

So	how	does	a	video	game	work?	...	9	
What	Do	You	Have	to	Do?	...	12	
You	Have	to	Create	the	StudentWorld	Class	...	13	
init()	Details	...	15	
Contents	of	Each	Oil	Field	...	16	

move()	Details	...	17	
Give	Each	Actor	a	Chance	to	Do	Something	..	20	
Add	New	Actors	During	Each	Tick	..	20	
Remove	Dead	Actors	after	Each	Tick	...	21	
Updating	the	Display	Text	..	21	

cleanUp()	Details	..	22	
You	Have	to	Create	Classes	for	All	Actors	..	23	
The	Iceman	Class	..	27	
What	the	Iceman	Must	Do	During	a	Tick	...	27	
What	the	Iceman	Must	Do	When	It	Is	Annoyed	..	29	
Getting	Input	From	the	User	...	29	

Ice	..	30	
What	Ice	Must	Do	When	It	Is	Created	...	30	
What	a	Ice	Object	Must	Do	During	a	Tick	..	31	
What	a	Ice	Object	Must	Do	When	It	Is	Annoyed	...	31	

Boulders	...	31	
What	a	Boulder	object	Must	Do	When	It	Is	Created	..	31	
What	the	Boulder	Object	Must	Do	During	a	Tick	...	31	
What	a	Boulder	Must	Do	When	It	Is	Annoyed	...	32	

Squirt	...	32	
What	a	Squirt	object	Must	Do	When	It	Is	Created	...	32	
What	the	Squirt	Object	Must	Do	During	a	Tick	...	33	
What	a	Squirt	Must	Do	When	It	Is	Annoyed	...	33	

Barrel	of	Oil	..	33	
What	a	Barrel	object	Must	Do	When	It	Is	Created	...	33	
What	the	Barrel	Object	Must	Do	During	a	Tick	...	34	
What	an	Barrel	Must	Do	When	It	Is	Annoyed	..	34	

Gold	Nugget	..	34	
What	a	Gold	Nugget	object	Must	Do	When	It	Is	Created	...	34	
What	the	Gold	Nugget	Object	Must	Do	During	a	Tick	...	35	
What	a	Gold	Nugget	Must	Do	When	It	Is	Annoyed	..	36	

Sonar	Kit	..	36	
What	a	Sonar	Kit	object	Must	Do	When	It	Is	Created	...	36	
What	the	Sonar	Kit	Object	Must	Do	During	a	Tick	...	37	
What	an	Sonar	Kit	Must	Do	When	It	Is	Annoyed	..	37	

Water	Pool	..	37	
What	a	Water	Pool	object	Must	Do	When	It	Is	Created	...	37	
What	a	Water	Pool	Object	Must	Do	During	a	Tick	...	38	
What	a	Water	Pool	Must	Do	When	It	Is	Annoyed	..	39	

Regular	Protesters	...	39	

	

3
	

What	a	Regular	Protester	object	Must	Do	When	It	Is	Created	...	39	
What	a	Regular	Protester	Must	Do	During	a	Tick	..	39	
What	the	Regular	Protester	Must	Do	When	It	Is	Annoyed	...	42	
What	the	Regular	Protester	Must	Do	When	It	Picks	up	a	Gold	Nugget	..	43	

Hardcore	Protesters	...	43	
What	a	Hardcore	Protester	object	Must	Do	When	It	Is	Created	..	43	
What	a	Hardcore	Protester	Must	Do	During	a	Tick	...	44	
What	the	Hardcore	Protester	Must	Do	When	It	Is	Annoyed	..	47	
What	the	Hardcore	Protester	Must	Do	When	It	Picks	up	a	Gold	Nugget	...	48	

Don’t	know	how	or	where	to	start?	Read	this!	...	48	
Building	the	Game	..	49	
For	Windows	..	49	
For	Mac	OS	X	...	50	

What	to	Turn	In	...	50	
Part	#1	...	50	
What	to	Turn	In	For	Part	#1	...	52	
Part	#2	...	53	
What	to	Turn	In	For	Part	#2	...	53	

FAQ	..	54	

	

4
	

Introduction

ElCo corporate spies have learned that SanMo is planning to release a new game, called
Iceman, and would like you to program an exact copy so ElCo can beat SanMo to the
market. To help you, ElCo corporate spies have managed to steal a prototype Iceman
executable file and several source files from the SanMo headquarters, so you can see
exactly how your version of the game must work (see posted executable file) and even
get a head start on the programming. Of course, such behavior would never be
appropriate in real life, but for this project, you’ll be a programming villain.

In Iceman, the player has to dig underground tunnels through an oil field looking for
oil. After the player has gathered all available oil within a particular field, the level is
completed and the player advances to a new, more difficult oil field.

Here is an example of what the Iceman game looks like:

Figure #1: A screenshot of the Iceman game. You can see the Iceman (upper-right), two Hardcore Protesters in
light blue (Regular Protesters, here not shown, are in dark blue, and one Hardcore Protesters in light blue),
several Boulders, two water pools, a sonar kit, a discovered Barrel of oil, and a discovered Gold Nugget.

	

5
	

Game Details

In Iceman, the player starts out a new game with three lives and continues to play until
all of his/her lives have been exhausted. There are multiple levels in Iceman, beginning
with level 0, and each level has its own unique oil field configuration. During each level,
the Iceman (controlled by the player) must dig and find all of the oil hidden within the oil
field in order to move on to the next level.

Upon starting each level, the player’s Iceman avatar (a miner) is placed at the top-middle of
the oil field just above the tunnel. Every time the player starts (or re-starts) a level, the
Iceman is restored to 100% health, given fresh water for their squirt gun (enough for 5
squirts), and given a single sonar charge that they can use to search for nearby items within
the ice. Each oil field has a number of Boulders, Gold Nuggets, and Barrels of oil randomly
distributed throughout the field. Only the Boulders will be visible initially – the other items
must be discovered by the Iceman before they become visible. The player must use the arrow
keys to move the Iceman left, right, up and down through the oil field; the Iceman digs
through any ice in the direction of motion. The Iceman may move/dig anywhere in the oil
field except for locations occupied by
Boulders.

The Iceman must dig through the oil field in search of every Barrel of oil and pick
each one up by moving to its location. Once the Iceman has picked up all of the
Barrels of oil in the current oil field, the level ends and the player advances to the next
level.

Unfortunately, the Iceman is not alone. A band of Regular and Hardcore Protesters
roam around the oil field and shout at the Iceman any time they get near to him. Each
time the Iceman is shouted at, he becomes more irritated (and less healthy) and
eventually he gives up and quits (loses a life). At this point, if the Iceman has more
lives, the player can continue the game on the current level. If not, the game is over.

In addition to digging and walking around the oil field, the Iceman may also shoot their
squirt gun (if it’s filled with water) by pressing the space bar. Squirts from the squirt gun
will irritate the Protesters and temporarily stun them. A Protester who is sufficiently
irritated (their hit points go to zero) will leave the oil field out of frustration.
Occasionally, Water Pools will randomly bubble up within the tunnels, and the Iceman
can move onto them to use this water to refill the squirt gun. But beware – a Water Pool
disappears quickly back into the tunnel’s ice, so the Iceman needs to siphon it off into the
squirt gun quickly lest they disappear.

The Iceman will also discover Gold Nuggets randomly distributed throughout the oil
field. If the Iceman picks up one or more gold Nuggets, he can use them to bribe the
Protesters by dropping a Nugget in front of a Protester. If a Protester runs into such
dropped gold, it will pick it up and accept it as a bribe. A bribed Regular Protester leaves
the oil field immediately. However, a Hardcore Protester simply pockets the gold and
after briefly stopping to gloat over this new treasure, resumes the hunt to protest against

	

6
	

the Iceman. If the player drops a Gold Nugget and it’s not picked up quickly, it will sink
into the muck of the oil field, never to be discovered again.

In addition to squirting and bribing the Protesters, the Iceman can also cause Boulders to
drop on them. If the Iceman digs all of the ice supporting a Boulder from underneath it,
then after a short delay, the Boulder will fall until it crashes into the ice or another
Boulder below. A Protester who is bonked by a Boulder as it falls becomes so irritated
that it will immediately leave the oil field. But beware, the Iceman is also susceptible to
being bonked. If the Iceman is bonked, he also becomes super irritated (lose all of his hit
points), and the level will end. If the player still has lives remaining, the level is restarted.

Of course, the Iceman is not alone – he has buddies that will help him from time to
time. Friends of the Iceman will occasionally drop new Sonar Kits in the upper-left
corner of the oil field for the Iceman to pick up. If the Iceman has one or more sonar
charges in his inventory, the player can press the Z key to use a charge to map the
contents of the oil field within an extended radius around them, eliminating the need to
dig into the ice to determine its contents. In addition to the Sonar Kits dropped by the
Iceman’s friends, he also starts out with one sonar charge at the start of each level.

There are two types of protesters: Regular Protesters and Hardcore Protesters. As the
gameplay progresses on each level, the game will introduce various new Regular and
Hardcore Protesters in the upper-right corner of the screen, who will then seek out the
Iceman to yell at him.

Regular Protesters are not too dedicated, and are more likely to leave the oil field if they
are either irritated by being squirted or bribed with gold. Regular Protesters wander
around essentially randomly through the tunnels of the oil field. However, if a Regular
Protester sees the Iceman, he will run right up to him and begin shouting at him (to
irritate him). Each shout will cause the Iceman’s health to go down, and when it reaches
zero, the Iceman will give up (and lose a life). If a Regular Protester is hit by a Boulder,
it will instantly give up and head directly for the upper-right corner of the screen, where
it will disappear from the game forever (although a different, new Protester will likely
soon replace him as the game progresses).

In contrast to the Regular Protesters, Hardcore Protesters are much nastier. They behave
almost identically to Regular Protesters, with a few key differences. First, they’re much more
dedicated and so it takes more squirts from the Iceman’s squirt gun to irritate them
sufficiently to make them leave the oil field. Second, Hardcore Protesters cannot be bribed
with Gold Nuggets to leave the oil field. Like Regular Protesters, they will stop to pick up
Nuggets dropped by the Iceman if they run into them. However, after a brief delay to
examine the Nugget (giving the Iceman valuable time to get away) they will pocket the gold
and continue to hunt through the oil field for the Iceman. Third, Hardcore Protesters are so
dedicated that they have found a way to track the Iceman’s location from his cell phone, and
if they are within a short range of the Iceman (e.g., less than 16 horizontal/vertical moves
away – this distance increases with each level of the game), they will run toward him.
Assuming they’re close enough, the HardCore Protesters will home in on the Iceman and

	

7
	

move toward him even if they have no direct line of sight to him (Hint: use a breadth-first
search like we learned about in the Queue lecture). Like Regular Protesters, HardCore
Protesters are instantly super-annoyed if they’re bonked by a Boulder and will leave the
oil field immediately. And Hardcore Protesters will exhibit the same movement behavior
as Regular Protesters if they're not within cell-phone-detecting range of the Iceman.

If the Iceman’s health reaches zero because they are repeatedly shouted at and irritated,
he gives up and loses one “life.” If, after losing a life, the player has one or more
remaining lives left, a new oil field is generated for them from scratch (with the same
difficulty as the previous oil field they just tried to solve, but with a random, new layout),
the Iceman is placed back on this level and they must again solve the entire level from
scratch. The Iceman will restart the level with full health points, as well as their initial
water supply for 5 squirt gun squirts, and one sonar charge.

The game window is exactly 64 squares wide by 64 squares high. Each object in the
game (e.g., the Iceman, Protesters, Boulders, Gold Nuggets, Sonar Kits, Barrels of oil,
Water, etc.) has an image that is exactly 4 squares high by 4 squares wide. The Iceman
may move anywhere within the oil field except on top of a Boulder. Protesters are unable
to dig through the Ice (they aren’t diggers, after all) so they may only move to locations
that have no Ice or Boulders (i.e., down the tunnels the Iceman has already dug). Both the
Iceman and the Protesters may occupy overlapping areas of the oil field with each other.

The bottom-leftmost square of the game window has coordinates x=0,y=0, while the
upper-rightmost square has coordinate x=63,y=63. Notice that x increases to the right and
y increases upward toward the top of the screen. You can look in our provided file,
GameConstants.h, for constants that represent the game window’s width and height. Each
object (e.g., the Iceman or a Gold Nugget) has an x,y coordinate designating its location,
and this coordinate points to the lower-left-hand corner of the object. Therefore, a game
object at location x=10,y=16 would occupy the 4x4 square described by a lower-left-hand
corner of (10,16) and an upper-right-hand corner of (13,19). No game object may have a
lower-left-hand coordinate greater than x=60 or y=60, as this would cause part of the
game object to be rendered outside the oil field. Similarly, no game object may have an x
or y coordinate that is less than zero.

The oil field, which is comprised of 1x1 Ice objects, occupies the entire width of the
game window, but only the lower 60 squares of the screen. A single tunnel is always at
the center of the oil field at the start of each level.

As the game progresses, each level will pose new challenges for the Iceman. The
number of Barrels of oil that must be collected increases, the number of Protesters
increases, the frequency of Water and Sonar Kits available to the Iceman declines, and
the Protesters move more quickly and are stunned for shorter and shorter periods of
time when squirted or when they find a Nugget. All of these details are described in the
later sections of this document.

	

8
	

Once a new oil field (all of the Ice that comprises the 64 -square wide by 60-square high
oil field) and its contents have been generated (Boulders, Barrels of oil, and Gold
Nuggets are distributed through the field) and the Iceman has been added to the game,
the game play begins. Game play is divided into ticks, and there are dozens of ticks per
second (to provide smooth animation and game play). During each tick, the following
occurs:

1. The player has an opportunity to hit a key to move the Iceman exactly one square
horizontally or vertically, shoot their squirt gun (if the Iceman has water), use a
sonar charge to reveal the nearby contents of the oil field, or give up (some levels
may be unsolvable, so the player can press the Escape key to lose a life and
restart the level from scratch).

2. Every other object in the game (e.g., Regular Protesters, Hardcore Protesters,
Gold Nuggets, Boulders, etc.) with the exception of Ice objects (which don’t do
anything) is given an opportunity to do something. For example, when given the
opportunity to do something, a Regular Protester can move one square (left, right,
up or down) according to its built-in movement algorithm (the Regular Protester
movement algorithms are described in detail in the various Regular Protester
sections below).

3. One or more new game objects (e.g., Protesters, Sonar Kits or Water) may be
added to the game; once added, they'll have an opportunity to do something
during each tick as well.

4. One or more existing game objects may be removed from the game. For example,
if the Iceman picks up a Gold Nugget, its object must be deleted from the game
(once the Iceman’s inventory has been updated).

During game-play, the player controls the direction of the Iceman with the arrow keys, or
for lefties and others for whom the arrow key placement is awkward, WASD or the
numeric keypad: up is w or 8, left is a or 4, down is s or 2, right is d or 6. The player may
move the Iceman anywhere in the oil field as they please. The player can sacrifice one
life and restart the current level by pressing the Escape key at any time.

The Iceman may shoot their squirt gun by pressing the spacebar key. If the Iceman
manages to squirt a Regular Protester or a Hardcore Protester enough, the Protester will
give up, and the player earns points:

For causing a Regular Protester to give up: 100 points
For causing a Hardcore Protester to give up: 250 points

In addition to squirting Protesters, the Iceman can dig the Ice from under a Boulder
causing it drop on Protesters (of both types). If a Boulder bonks a Protester as it falls, the
player earns lots of points:

For causing a Boulder to bonk a Protester: 500 points

	

9
	

The player can also earn points by dropping a Gold Nugget in front of a Protester. Should
the Protester pick up a dropped Gold Nugget, the player earns:

For bribing a Regular Protester with a Gold Nugget: 25 points
For bribing a Hardcore Protester with a Gold Nugget: 50 points

Finally, the player also earns points and special benefits by picking up (i.e., moving onto
the same region as) various items:

o Barrel of oil: 1000 points (the Iceman must collect all of the Barrels on the
oil field to complete the level)

o Gold Nugget: 10 points (the Iceman gets 1 piece of gold added to their
inventory, which they can subsequently drop to bribe Protesters)

o Water: 100 points (5 squirts worth of water are added to the Iceman’s
inventory)

o Sonar Kit: 75 points (the Iceman gets two new sonar charges added to
their inventory)

The player starts with three lives. The player loses a life if their health reaches zero (from
being annoyed by Protester shouts, or from being bonked by a Boulder).

When the Iceman is completely annoyed (their health reaches zero), the current level
ends and the player’s number of remaining lives is decremented by 1. If the player still
has at least one life left, then they are prompted to continue and given another chance by
restarting the current level from scratch. If the player has no lives left, then the game is
over. Pressing the q key lets you quit the game prematurely.

So how does a video game work?

Fundamentally, a video game is composed of a bunch of objects (i.e., class variables); in
Iceman, those objects include the Iceman, Regular Protesters, Hardcore Protesters,
Goodies (e.g., Sonar Kits, Gold Nuggets, Water, Barrels of oil) that can be picked up,
Boulders, Ice, and Squirts (water squirted by the Iceman at Protesters). Let’s call these
objects “actors,” since each object is an actor in our video game. Each actor has its own
x, y location in the oil field, its own internal state (e.g., the location of the Protester, what
direction the Protester is moving, etc.) and its own special algorithms that control its
actions in the game based on its own state and the state of the other objects in the oil
field. In the case of the Iceman, the algorithm that controls the Iceman’s actor object is
the player’s own brain and hand, and the keyboard! In the case of other actors (e.g.,
Protesters), each object has an internal autonomous algorithm and state that dictates how
the object behaves in the game world.

Once a game begins, gameplay is divided into ticks. A tick is a unit of time, for example,
50 milliseconds (that’s 20 ticks per second).

	

10
	

During a given tick, the video game calls upon each object’s behavioral algorithm and
asks the object to perform its behavior. When asked to perform its behavior, each
object’s behavioral algorithm must decide what to do and then make a change to the
object’s state (e.g., move the object 1 square to the left), or change other objects’ states
(e.g., when a Protester’s algorithm is called by the game, it may determine that it has
moved next to a Iceman, and it may shout at the Iceman, irritating him). Typically the
behavior exhibited by an object during a single tick is limited in order to ensure that the
gameplay is smooth and that things don’t move too quickly and confuse the player. For
example, a Protester will move at most square left/right/up/down during each tick, rather
than moving two or more squares; if a Protester were to move 5 squares in a single tick,
for example, the user would be confused because humans are used to seeing smooth
movement in video games, not jerky shifts.

After the current tick is over and all actors have had a chance to adjust their state (and
possibly adjust other actor’s states), our game framework (that we provide) animates the
actors onto the screen in their new configuration. So if a Protester changed its location
from x=10, y=5 to x=11, y=5 (moved one square right), then our game framework would
erase the graphic of the Protester from location 10,5 on the screen and draw the
Protester’s graphic at 11,5 instead. Since this process (asking actors to do something,
then animating them to the screen) happens some 10-20 times per second, the user will
see smooth-ish animation.

Then, the next tick occurs, and each object’s algorithm is again allowed to do something,
our framework displays the updated actors on-screen, and so on.

Assuming the ticks are quick enough (a fraction of a second), and the actions performed
by the objects are subtle enough (i.e., a Protester doesn’t move 3 inches away from
where it was during the last tick, but instead moves a few millimeters away), when you
display each of the objects on the screen over time, it looks like each object is
performing a continuous series of fluid motions.

A video game can be broken into three different phases:

Initialization: The game World is initialized and prepared for play. This involves
allocating one or more the actors (which are C++ objects) and placing them in the game
world so that they will appear in the oil field.

Game play: Game play is broken down into a bunch of ticks. During each tick, all of the
actors in the game have a chance to do something, and perhaps die. During each tick, new
actors may be added to the game and actors who die must be removed from the game
world and deleted.
Cleanup: This phase occurs either when the player has lost a life (but has more lives
left), the player has completed the current level, or the player has lost all of their lives and
the game is over. This phase frees all of the objects in the World (e.g., Regular
Protesters, Ice, Boulders, Goodies, the Iceman, etc.) since the level has ended. If game-
play is not over (i.e., the player has more lives), then the game proceeds back to the

	

11
	

Initialization step, where the oil field is repopulated with new occupants and game play
restarts at the current level.

Here is what the main logic of a video game looks like, in pseudocode (we provide
some similar code for you in our provided GameController.cpp):

while (The player has lives left)
{

Prompt_the_user_to_start_playing(); // “press a key to start”

Initialize_the_game_world(); // you’re going to write this func

while (The player is still alive)
{

// each pass through this loop is a tick (1/20th of a sec)

// you’re going to write code to do the following
Ask_all_actors_to_do_something();
If_any_actors_died_then_delete_them_from_the_world();

// we write this code to handle the animation for
you Animate_all_of_the_alive_actors_to_the_screen();
Sleep_for_50ms_to_give_the_user_time_to_react();

}
// the player died – you’re going to write this code
Cleanup_all_game_world_objects(); // you’re going to write this
if (The player has more lives)

Prompt_the_player_to_continue();
}

Tell_the_user_the_game_is_over(); // “game over!”; we provide this

And here is what the Ask_all _actors_to_do_something() function might look like
(which is one of the functions you’ll have to write):

void Ask_all_actors_to_do_something()
{

for each actor on the level:
if (the actor is still alive)

tell the actor to doSomething();
}

You will typically use a container (an array, vector, or list) to hold pointers to each of
your live actors. Each actor (a C++ object) has a doSomething() method. In this method,
each actor (e.g., a Regular Protester) can decide what to do. For example, here is some
pseudo code showing what a hypothetical Regular Protester might decide to do each time
it gets asked to do something:

class RegularProtester: public …
{

public:
virtual void doSomething()
{

If I am facing the Iceman and he is next to me, then
Shout at the Iceman (to annoy him)

	

12
	

Else if the Iceman is visible via direct line of sight, then
Switch direction to face the Iceman
Move one square in this direction

Else if I’m about to run into an obstacle, then
Pick a new direction
Move one square in this direction

Else
Move one square in my current direction

}
...

};

And here’s what the Iceman’s doSomething() method might look like:

class Iceman: public …
{

public:
virtual void doSomething()
{

Try to get user input (if any is available)
If the user pressed the UP key and that square is open then

Increase my y location by one
If the user pressed the DOWN key and that square is open then

Decrease my y location by one
...
If the user pressed the space bar to fire and the Iceman has

water, then
Introduce a new Squirt object into the game facing the same

direction as the player
...

}
...

};

What Do You Have to Do?

You must create a number of different classes to implement the Iceman game. Your
classes must work properly with our provided classes, and you must not modify our
classes or our source files in any way to get your classes to work properly. Here are
the specific classes that you must create:

1. You must create a class called StudentWorld that is responsible for keeping track
of your game world (including the oil field) and all of its actors/objects (e.g., the
Iceman, Protesters, Boulders, Ice, etc.) that are inside the oil field.

2. You must create a class to represent the Iceman in the game.
3. You must create classes for Regular Protesters, Hardcore Protesters, Squirts (that

the Iceman shoots), Water, Sonar Kits, Gold Nuggets, Ice, Boulders, and Barrels of
oil, as well as any additional base classes (e.g., a Goodie base class that’s common
to all pick-uppable items like Water, Gold Nuggets, etc., if you need one) that are
required to implement the game.

	

	

13
	

You Have to Create the StudentWorld Class

Your StudentWorld class is responsible for orchestrating virtually all game play – it keeps
track of the whole game world (the Ice of the oil field, and all of its inhabitants such as
Protesters, the Iceman, Boulders, Goodies, etc.). It is responsible for initializing the game
world at the start of the game, asking all of your game’s actors to do something during
each tick of the game, and destroying all of the actors in the game world when the user
loses a life or when actors disappear (e.g., a Regular Protester leaves the oil field after
being sufficiently annoyed by being repeatedly squirted).

Your StudentWorld class must be derived from our GameWorld class (found in
GameWorld.h) and must implement at least these three methods (which are defined as
pure virtual in our GameWorld class):

 virtual int init() = 0;
 virtual int move() = 0;
 virtual void cleanUp() = 0;

The code that you write must never call any of these three functions. Instead, our
provided game framework will call these functions for you. So you have to implement
them correctly, but you won’t ever call them yourself in your code.

When a new level starts (e.g., at the start of a game, or when the player completes a
level and advances to the next level), our game framework will call the init() method
that you defined in your StudentWorld class. You don’t call this function; instead, our
provided framework code calls it for you.

Your init() method is responsible for creating the current level’s oil field and populating
it with Ice, Boulders, Barrels of Oil, and Gold Nuggets (we’ll show you how below),
and constructing a virtual representation of the current level in your StudentWorld class,
using one or more data structures that you come up with. This function must return the
value GWSTATUS_CONTINUE_GAME (defined in GameConstants.h).

The init() method is automatically called by our provided code either (a) when the game
first starts, (b) when the player completes the current level and advances to a new level
(that needs to be initialized), or (c) when the player loses a life (but has more lives left)
and the game is ready to restart at the current level.

Once a new level has been initialized with a call to your init() method, our game
framework will repeatedly call your StudentWorld’s move() method, at a rate of roughly
10-20 times per second. Each time your move() method is called, it must run a single tick
of the game. This means that it is responsible for asking each of the game’s actors (e.g.,
the Iceman, each Regular Protester or Hardcore Protester, Boulders, etc.) to try to do
something: e.g., move themselves and/or perform their specified behavior. Finally, this
method is responsible for disposing of (i.e., deleting) actors (e.g., a Squirt from the
Iceman’s squirt gun that has run its course, a Regular Protester who has left the oil field,
a Boulder that has fallen and crashed into Ice below, etc.) that need to disappear during a

	

14
	

given tick. For example, if a Boulder has completed its fall and disintegrated in the Ice
below, then its state should be set to “dead,” and the after all of the actors in the game
get a chance to do something during the tick, the move() method should remove that
Boulder from the game world (by deleting its object and removing any reference to the
object from the StudentWorld’s data structures). Your move() method will automatically
be called once during each tick of the game by our provided game framework. You will
never call the move() method yourself.

The cleanup() method is called by our framework when the player loses a life (e.g., the
Iceman’s hit-points reach zero due to being shouted at by one or more Protesters), or the
player successfully completes the current level. The cleanup() method is responsible for
freeing all actors (e.g., all Regular Protester objects, all Hardcore Protester objects, all
Ice and Boulder objects, the Iceman object, all Goodie objects (like Water, Gold Nuggets,
Barrels of oil), Squirt objects, etc.) that are currently active in the game. This includes all
actors created during either the init() method or introduced during subsequent game ticks
(e.g., a Hardcore Protester that was added to the oil field during the middle of a level, or
a Squirt of water shot by the Iceman just before they complete the level) that have not yet
been removed from the game.

You may add as many other public or private methods and private member variables to
your StudentWorld class as you like (in addition to the above three methods, which you
must implement).

Your StudentWorld class must be derived from our GameWorld class. Our GameWorld
class provides the following methods for your use:

 unsigned int getLives() const;
 void decLives();
 void incLives();
 unsigned int getScore() const;
 unsigned int getLevel() const;
 void increaseScore(unsigned int howMuch);
 void setGameStatText(string text);
 bool getKey(int& value);
 void playSound(int soundID);

getLives() can be used to determine how many lives the player has left.

decLives() reduces the number of player lives by one.

incLives() increases the number of player lives by one.

getScore() can be used to determine the player’s current score

getLevel() can be used to determine the player’s current level number.

	

15
	

increaseScore() is used by your StudentWorld class (or you other classes) to increase the
user’s score when the Iceman irritates Protesters with a Squirt, picks up a Barrel or a
Goodie of some sort, or bonks a Protester with a Boulder, etc. When your code calls this
method, you must specify how many points the player gets (e.g., 100 points for irritating
a Regular Protester to the point where it gives up). This means that the game score is
controlled by our GameWorld object – you must not maintain your own score member
variable in your own class(es).

The setGameStatText() method is used to specify what text is displayed at the top of the
game screen, e.g.:

Lvl: 52 Lives: 3 Hlth: 80% Wtr: 20 Gld: 3 Oil Left: 2 Sonar: 1 Scr: 321000

You’ll pass in a string to this function that specifies the proper stat values.

getKey() can be used to determine if the user has hit a key on the keyboard to move the
player or to fire. This method returns true if the user hit a key during the current tick, and
false otherwise (if the user did not hit any key during this tick). The only argument to this
method is a variable that will be filled in with the key that was pressed by the user (if any
key was pressed). If the player does hit a key, the argument will be set to one of the
following values (constants defined in GameConstants.h):

KEY_PRESS_LEFT
KEY_PRESS_RIGHT
KEY_PRESS_UP
KEY_PRESS_DOWN
KEY_PRESS_SPACE
KEY_PRESS_ESCAPE
KEY_PRESS_TAB
‘z’
‘Z’

The playSound() method can be used to play a sound effect when an important event
happens during the game (e.g., a Regular Protester gives up due to being squirted, or the
Iceman picks up a Barrel of oil). You can find constants (e.g.,
SOUND_PROTESTER_GIVE_UP) that describe what noise to make inside of the
GameConstants.h file. Here’s how the playSound() method might be used:

// if a Regular Protester reaches zero hit-points and dies
// then make a dying sound

if (theProtesterHasZeroHitPoints())

GameController::getInstance().playSound(SOUND_PROTESTER_GIVE_UP);

init() Details

Your StudentWorld’s init() method must:

A. Initialize the data structures used to keep track of your game’s virtual world

	

16
	

B. Construct a new oil field that meets the requirements stated in the section below
(filled with Ice, Barrels of oil, Boulders, Gold Nuggets, etc.)

C. Allocate and insert a valid Iceman object into the game world at the proper
location

Your init() method must construct a representation of your virtual world and store this in
your StudentWorld object. It is required that you keep track of all of the game objects
(e.g., actors like Regular Protesters, Gold Nuggets, Barrels of oil, Sonar Kits , Boulders,
etc.) with the exception of Ice objects and the Iceman object in a single STL collection
like a list or vector. To do so, we recommend using a vector of pointers to your game
objects, or a list of pointers to your game objects.

If you like, your StudentWorld class may keep a separate pointer to the Iceman rather
than keeping a pointer to the Iceman object in this collection along with the other game
objects.

Similarly, you may store pointers to all Ice objects in a different data structure than the
list/vector used for your other game actors (i.e., those objects that actually do
something during each tick) if you like. Hint: Keeping all of your Ice objects in a
separate 2-D array of Ice pointers will speed things up.

You must not call the init() method yourself. Instead, this method will be called by our
framework code when it’s time for a new game to start (or when the player completes a
level, or needs to restart a level).

Contents of Each Oil Field

First, you must completely fill rows 0 through 59 of the oil field with Ice objects, with
the exception of a vertical mine shaft in the middle of the field. Your Ice class, which is
used to create these Ice objects, must be derived in some way from our GraphObject
class, and have an imageID of IID_ICE. A Ice object is the simplest type of game object
in Iceman. All it does is display itself to the screen – it doesn't move or perform any other
actions on its own. You’ll find more details on the requirements for the Ice object in its
section below.

As mentioned above, a single tunnel, 4 squares wide (occupying columns 30-33 of the oil
field), and 56 squares deep (occupying rows 4-59) must lead from the surface of the mine
down into its depths, and must be devoid of any Ice objects.

The Iceman must start the game at location x=30, y=60, just atop the tunnel, at the start
of each level (and after the Iceman loses a life and restarts a level).

You must distribute the following game objects randomly in the oil field:

B Boulders in each level, where:

int B = min(current_level_number / 2 + 2, 9)

	

17
	

G Gold Nuggets in each level, where:

int G = max(5-current_level_number / 2, 2)

L Barrels of oil in each level, where:

int L = min(2 + current_level_number, 21)

The starting level # is level 0, so level 0 would have 2 Boulders, 5 Nuggets and 2 Barrels of
oil. Or, for example, level 2 would have 3 Boulders, 4 Nuggets and 4 Barrels of oil.

No distributed game object may be within a radius (Euclidian distance) of 6 squares of
any other distributed game object. For example, if a Boulder were distributed to x=1,y=2,
then a Nugget could not be distributed to x=6,y=4 because the two would be 5.39 squares
away (less than or equal to 6 squares away). However the same Nugget could be
distributed to x=6,y=6 because this would be 6.4 squares away (more than 6.0 squares
away). Nuggets and Oil Barrels must be distributed between x=0,y=0 and x=60,y=56
inclusive, meaning that the lower-left corner of any such object must fall within this
rectangle. Boulders must be distributed between x=0,y=20 and x=60,y=56, inclusive (so
they have room to fall).

All distributed Gold Nuggets must start in a state that is pickup-able by the Iceman,
but not by Protesters. All distributed Gold Nuggets must start out in a permanent state.

All distributed Gold Nuggets and Barrels of oil must start out in an invisible state (not
displayed on the screen). They will become visible when the Iceman either gets near
them (this is detailed within the specs for Nuggets and Barrels) or if the Iceman uses a
sonar charge to scan the nearby Ice around him.

There must not be any Ice overlapping the 4x4 square region of each Boulder, so you’ll
need to clear this Ice out when you place your Boulders within the oil field (or place your
Boulders first, then avoid placing Ice objects where the Boulders are located). The other
items must have the area under their 4x4 image completely filled with Ice (in other
words, these items must not be distributed at the surface of the oil field or within the
mine shaft).

Once your init() method has distributed all of the Ice, Iceman, and game objects
throughout the oil field, it should return so our game framework can start the game.

move() Details

The move() method must perform the following activities:

1. It must update the status text on the top of the screen with the latest information
(e.g., the user’s current score, the remaining bonus score for the level, etc.).

	

18
	

2. It must ask all of the actors that are currently active in the game world to do
something (e.g., ask a Regular Protester to move itself, ask a Boulder to see if it
needs to fall down because Ice beneath it was dug away, give the Iceman a
chance to move up, down, left or right, etc.).

A. If an actor does something that causes the Iceman to give up, then the
move() method should immediately return GWSTATUS_PLAYER_DIED.

B. If the Iceman collects all of the Barrels of oil on the level (completing the
current level), then the move() method should immediately play a
sound of SOUND_FINISHED_LEVEL and then return a value of
GWSTATUS_FINISHED_LEVEL.

3. It must then delete any actors that need to be removed from the game during this
tick and remove them from your STL container that tracks them. This includes,
for example:

1. A Protester that has run to the upper-right-hand corner of the oil field after
being sufficiently annoyed (by being squirted by a Squirt or hit by a
Boulder) and is ready to “leave” the oil field

2. A Boulder that has fallen down a shaft and disintegrated upon hitting the
bottom (or another Boulder)

3. A Gold Nugget that has been picked up by the Iceman or a Protester and
is therefore no longer in the oil field

4. A Water Pool that has dried up after a period of time.
5. A Squirt from the Iceman’s squirt gun once it’s reached the maximum

distance it can travel.
6. Etc.

The move() method must return one of three different values when it returns at the end of
each tick (all are defined in GameConstants.h):

GWSTATUS_PLAYER_DIED
GWSTATUS_CONTINUE_GAME
GWSTATUS_FINISHED_LEVEL

The first return value indicates that the player died during the current tick, and instructs
our provided framework code to tell the user the bad news and restart the level if the
player has more lives left. If your move() method returns this value, then our framework
will call your cleanup() method to destroy the level, then call your init() method to re-
initialize the level from scratch. Assuming the player has more lives left, they will be
prompted to continue their game, and our framework will then begin calling your move()
method over and over, once per tick, to let the user play the level again.

The second return value indicates that the tick completed without the player dying BUT
the player has not yet completed the current level. Therefore the game play should
continue normally for the time being. In this case, the framework will advance to the
next tick and call your move() method again.

The final return value indicates that the player has completed the current level (that is,
gathered all of the Barrels of oil on the level). If your move() method returns this value,

	

19
	

then the current level is over, and our framework will call your cleanup() method to
destroy the level, advance to the next level, then call your init() method to prepare that
level for play, etc…

IMPORTANT NOTE: The “skeleton” code that we provide to you is hard-coded to
return a GWSTATUS_PLAYER_DIED status value from our dummy version of the move()
method. Unless you change this value to GWSTATUS_CONTINUE_GAME your game will not
display anything on the screen! So if your screen just shows up black once the user starts
playing, you’ll know why!

Here’s pseudocode for how the move() method might be implemented:

int StudentWorld::move()
{

// Update the Game Status Line
updateDisplayText(); // update the score/lives/level text at screen top

// The term “Actors” refers to all Protesters, the player, Goodies,
// Boulders, Barrels of oil, Holes, Squirts, the Exit, etc.

// Give each Actor a chance to do something
for each of the actors in the game world
{

if (actor[i] is still active/alive)
{
// ask each actor to do something (e.g. move)

tellThisActorToDoSomething(actor[i]);

if (theplayerDiedDuringThisTick() == true)

return GWSTATUS_PLAYER_DIED;

if (theplayerCompletedTheCurrentLevel() == true)
{

return GWSTATUS_FINISHED_LEVEL;
}

}
}

// Remove newly-dead actors after each tick
removeDeadGameObjects(); // delete dead game objects

// return the proper result
if (theplayerDiedDuringThisTick() == true)

return GWSTATUS_PLAYER_DIED;
// If the player has collected all of the Barrels on the level, then

// return the result that the player finished the level
if (theplayerCompletedTheCurrentLevel() == true)
{

playFinishedLevelSound();
return GWSTATUS_FINISHED_LEVEL;

}

// the player hasn’t completed the current level and hasn’t died
// let them continue playing the current level
return GWSTATUS_CONTINUE_GAME;

}

	

20
	

Give Each Actor a Chance to Do Something

During each tick of the game each active actor must have an opportunity to do something
(e.g., move around, shoot, etc.). Actors include the Iceman, Regular Protesters,
Hardcore Protesters, Boulders, Gold Nuggets, Barrels of oil, Water, Squirts from the
Iceman’s squirt gun, and Sonar Kits.

Your move() method must enumerate each active actor in the oil field (i.e., held by your
StudentWorld object) and ask it to do something by calling a method in the actor’s object
named doSomething(). In each actor’s doSomething() method, the object will have a
chance to perform some activity based on the nature of the actor and its current state: e.g.,
a Regular Protester might move one step up, the Iceman might shoot a Squirt of water, a
Boulder may fall down one square, etc.

To help you with testing, if you press the f key during the course of the game, our game
controller will stop calling move() every tick; it will call move() only when you hit a key
(except the r key). Freezing the activity this way gives you time to examine the screen,
and stepping one move at a time when you're ready helps you see if your actors are
moving properly. To resume regular game play, press the r key.

Add New Actors During Each Tick

During each tick of the game in your move() method, you may need to add new
Protesters (Regular or Hardcore) and/or Goodies (Water Pools or Sonar Kits) to the oil
field. You must use the following approach to decide whether to add these new actors to
the oil field:

1. A new Protester (Regular or Hardcore) may only be added to the oil field after at

least T ticks have passed since the last Protester of any type was added, where:

int T = max(25, 200 – current_level_number)

2. The target number P of Protesters that should be on the oil field is equal to:

int P = min(15, 2 + current_level_number * 1.5)

However, based on #1 above, you can only add a new Protester to the oil field
every T ticks, so the actual number of Protesters on the oil field at any particular
time may be less than the target number P.

3. The first Protester must be added to the oil field during the very first tick of each

level (and any replays of the level).
4. Assuming the appropriate number of ticks T has elapsed since the last Protester

was added to the oil field, AND the current number of Protesters on the oil field
is less than P, then you must add a new Protester to the oil field during the current

	

21
	

tick. All Protesters must start at location x=60,y=60 on the screen. The odds of
the Protester being a Hard Core Protester (vs. a Regular Protester) must be
determined with this formula:

int probabilityOfHardcore = min(90, current_level_number * 10 + 30)

5. There is a 1 in G chance that a new Water Pool or Sonar Kit Goodie will be added

to the oil field during any particular tick, where:

int G = current_level_number * 25 + 300

Assuming a new Goodie should be added, there is a 1/5 chance that you should
add a new Sonar Kit, and a 4/5 chance you should add a Water Goodie.

Each new Sonar Kit must be added at x=0, y=60 on the screen.

Each new Water Goodie must be added to a random ice-less spot in the oil field.
Water may only be added to a location if the entire 4x4 grid at that location is free
of Ice.

Remove Dead Actors after Each Tick

At the end of each tick your move() method must determine which of your actors are no
longer alive, remove them from your STL container of active actors, and delete their
objects (so you don’t have a memory leak). For example, once a Barrel is picked up by
the Iceman during a tick, it should be marked as “not active.” After giving all of the
actors a chance to move during the current tick, your move() method would then discover
this inactive Barrel (as well as any other objects that have become inactive during this
tick) and remove its object pointer from your StudentWorld’s container of active objects.
Finally, your move() method should delete the object (using the C++ delete command) to
free up room in memory for future actors that will be introduced later in the game. (Hint:
Each of your actors could have a member variable indicating whether or not it is still
active/alive!)

Updating the Display Text

Your move() method must update the game statistics at the top of the screen during every
tick by calling the setGameStatText() method that we provide in our GameWorld class.
You could do this by calling a function like the one below from your StudentWorld’s
move() method:

void setDisplayText()
{

int level = getCurrentGameLevel();
int lives = getNumLivesLeft();
int health = getCurrentHealth();
int squirts = getSquirtsLeftInSquirtGun();
int gold = getPlayerGoldCount();
int barrelsLeft = getNumberOfBarrelsRemainingToBePickedUp();

	

22
	

int sonar = getPlayerSonarChargeCount();
int score = getCurrentScore();

// Next, create a string from your statistics, of the form:

// Lvl: 52 Lives: 3 Hlth: 80% Wtr: 20 Gld: 3 Oil Left: 2 Sonar: 1 Scr: 321000

string s = someFunctionYouUseToFormatThingsNicely(level, lives, health,

squirts, gold, barrelsLeft, sonar, score);

// Finally, update the display text at the top of the screen with your
// newly created stats
setGameStatText(s); // calls our provided GameWorld::setGameStatText

}

Your status line must meet the following requirements:

1. Each field must be exactly as wide as shown in the example above:
a. The Lvl field must be 2 digits long, with leading spaces (e.g., “_1”, where

_ represents a space).
b. The Lives field should be 1 digit long (e.g., “2”).
c. The Hlth field should be 3 digits long and display the player’s health

percentage (not its hit-points!), with leading spaces, and be followed by a
percent sign (e.g., “_70%”).

d. The Wtr field should be 2 digits long, with a leading space as required
(e.g., “_ 7”).

e. The Gld field should be 2 digits long, with a leading space as required
(e.g., “_ 3”).

f. The Oil Left field should be 2 digits long, with a leading space as required
(e.g., “_ 4”).

g. The Sonar field should be 2 digits long, with a leading space as required
(e.g., “_ 2”).

h. The Scr must be exactly 6 digits long, with leading zeros (e.g., 003124).
2. Each statistic must be separated from the last statistic by two spaces. For

example, between the “000100” of the score and the “L” in “Level” there must be
exactly two spaces.

cleanUp() Details

When your cleanUp() method is called by our game framework, it means that the Iceman
lost a life (e.g., his hit-points/annoyance tolerance reached zero due to being shouted at or
being bonked by a Boulder), or has completed the current level. In this case, every actor
in the entire oil field (the Iceman and every Protester, Goodies like
Nuggets, Sonar Kits and Water, Barrels of oil, Boulders, Ice, etc.) must be deleted and
removed from your StudentWorld’s container(s) of active objects, resulting in an empty
oil field. If the player has more lives left, our provided code will subsequently call your
init() method to create a new oil field and the level will then continue from scratch with a
brand new set of actors (including a newly-generated Iceman!).

	

23
	

You must not call the cleanUp() method yourself when the player’s hit points go to zero.
Instead, this method will be called by our code

You Have to Create Classes for All Actors

The Iceman game has a number of different Game Objects, including:

• The Iceman
• Regular Protesters
• Hardcore Protesters
• Squirts of water (that can be shot by the Iceman)
• Barrels of oil
• Boulders
• Gold Nuggets
• Sonar kits
• Water refills (that can be picked up to refill the Iceman’s squirt gun)
• Ice

Each of these game objects can occupy a slot in the oil field and interact with other game
objects within the oil field.

Now of course, many of your game objects will share things in common – for instance,
every one of the objects in the game (Regular Protesters, the Iceman, Ice, Boulders, etc.)
has an x,y coordinate. Many game objects have the ability to perform an action – to do
something (e.g., move or shoot) – during each tick of the game. Many of them can be
potentially annoyed (e.g., the Iceman and Protesters can be by annoyed by Squirts of
water or bonked by Boulders, etc.) and could be irritated to the point of quitting during a
tick. All of them need some attribute that indicates whether or not they are still
active/alive (or they became inactive/died during the current tick), etc.

It is therefore your job to determine the commonalities between your different game
objects and make sure to factor out common behaviors and traits and move these into
appropriate base classes, rather than duplicate these items across your derived classes –
this is in fact one of the tenets of object oriented programming.

Your grade on this project will largely depend upon your ability to create an intelligent
set of classes that follow good object-oriented design principles. Your classes MUST
NEVER duplicate code or member variables – if you find yourself writing the same (or
largely similar) code across multiple classes, then this is an indication that you should
define a common base class and migrate this common functionality/data to the base class.
Duplication of code is the root of all evil in programming – it leads to bugs,
inconsistencies, code bloat, etc. and should be avoided whenever possible.

Hint: When you notice this specification repeating the same text nearly exactly in the
following sections (e.g., in the Regular Protester section and the Hardcore Protester

	

24
	

section, or in the Gold Nugget or Sonar Kit sections) you MUST make sure to identify
common behaviors and move these into proper base classes. NEVER duplicate
behaviors across classes that can be moved into a base class!

You MUST derive all of your game objects directly or indirectly from a base class that
we provide called GraphObject, e.g.:

class Actor: public GraphObject {
public:

 … };

 class Protester: public Actor {
 public:
 …

};

class HardcoreProtester: public Protester {
public:
 …
};

GraphObject is a class that we have defined that helps hide a lot of the ugly logic
required to graphically display your actors on the screen. If you don’t derive your classes
from our GraphObject base class, then you won’t see anything displayed on the screen!

The GraphObject class provides the following methods that you may use in your classes:

 GraphObject(int imageID, int startX, int startY,
 DIRECTION startDirection, float size = 1.0,
 unsigned int depth = 0);

void setVisible(bool shouldIDisplay);
 void getX() const;
 void getY() const;
 void moveTo(int x, int y);
 DIRECTION getDirection() const; // Directions: up, down, left, right
 void setDirection(DIRECTION d); // Directions: up, down, left, right

You may use any of these methods in your derived classes, but you must not use any
other methods found inside of GraphObject in your other classes (even if they are public
in our class). You must not redefine any of these methods in your derived classes since
they are not defined as virtual in our base class.

GraphObject(
int imageID,
int startX,
int startY,
DIRECTION startDirection,
float size = 1.0,

	

25
	

unsigned int depth = 0
)

When you construct a new GraphObject, you must specify the following parameters:

1. An imageID that indicates what graphical image (aka sprite) our graphics engine
should display on the screen. One of the following IDs, found in GameConstants.h,
MUST be passed in for the imageID value:

IID_PLAYER // for the Iceman
IID_PROTESTER // a regular protester
IID_HARD_CORE_PROTESTER // a hardcore protester
IID_WATER_SPURT // for a squirt of water from the Iceman
IID_BOULDER
IID_BARREL // a barrel of oil
IID_ICE // a 1x1 square of ice
IID_GOLD // a gold nugget
IID_SONAR // a sonar kit
IID_WATER_POOL // a water pool to refill the squirt gun

2. You must specify the initial x,y location of the object. The x value may range from 0
to VIEW_WIDTH-SPRITE_WIDTH inclusive, and the y value may range from 0 to
VIEW_HEIGHT-SPRITE_HEIGHT inclusive. Notice that you pass the coordinates as
x,y (i.e., column, row and not row, column.).

3. You must specify the initial direction that each game object will be facing. Acceptable
values include: up, down, left, and right. The definitions for these values may be found in
the GraphObject class within GraphObject.h.

4. You must specify the size of the image. Most images (e.g., Protesters, Gold Nuggets,
the Iceman, etc.) will have a size of 1.0, which is the equivalent of a 4 squares by 4
squares on the screen. In contrast, Ice will always have a size of .25 making it 1 square
by 1 square.

5. You must specify the depth of the image. This value indicates whether the image is in
the foreground (0), in the background (10) or somewhere in between. If two images are
displayed at the same location, the graph object with the smaller depth value will be
drawn on top of the graph object with the larger depth value, either partially or
completely obscuring it. We will specify what the depth should be for each of your
GraphObject-derived classes in the sections below.

setVisible(bool shouldIDisplay)

New GraphObjects start out invisible and are NOT displayed on the screen until the
programmer calls the setVisible() method with a value of true for the parameter.

	

26
	

setVisible(bool shouldIDisplay) is used to tell our graphical system whether or not to
display a particular GraphObject on the screen.

If you call setVisible(true) on a GraphObject, then your object will be displayed on
screen automatically by our framework (e.g., a Regular Protester image will be drawn to
the screen at the GraphObject’s specified x,y coordinates if the object’s imageID is
IID_PROTESTER). If you call setVisible(false) then your GraphObject will not be
displayed on the screen.

NOTE: When you create a new game object, always remember that if you want it to be
displayed on the screen, you must call its setVisible() method with a value of true!

int getX() const
int getY() const

These methods are used to determine a GraphObject’s current location on the screen.
Since each GraphObject maintains an x,y location, this means that your derived classes
must not also have x,y member variables, but instead use those in the GraphObject base
class.

void moveTo(int x, int y)

The moveTo() method must be used to update the location of a GraphObject within the
oil field. For example, if a Regular Protester’s movement logic dictates that it should
move to the right, you must do something like the following:

moveTo(getX()+1, y); // move one square to the right

You must use the moveTo() method to adjust the location of a GameObject in the game if
you want that object to be properly animated. As with the GraphObject constructor, note
that the order of the parameters to moveTo is x,y (col,row) and NOT y,x (row,col).

DIRECTION getDirection() const
void setDirection(DIRECTION d)

These two methods are used to get and set the current direction the GraphObject is
facing. Valid values include up, down, left, and right. Changing the direction causes our
graphics engine to automatically rotate the image appropriately before displaying it on
the screen.

Now that you know about our GraphObject base class, you’ll need to derive all of your
game object classes based on this class (either directly, or indirectly).
	

	

27
	

The Iceman Class

Here are the requirements you must meet when implementing the Iceman class:

What a Iceman Object Must Do When It Is Created

When it is first created:

1. The Iceman must have an image ID of IID_PLAYER.
2. The Iceman must always start at location x=30, y=60.
3. The Iceman, in its default state:

a. Is given 10 hit points
b. Is given 5 units of water to squirt with his squirt gun (he may pick up

additional Water in the oil field)
c. Is given 1 sonar charge
d. Starts out with zero gold nuggets
e. Should start facing rightward

4. The Iceman has the following graphic parameters:
a. It has an image depth of 0 – meaning its graphic image should always be

in the foreground (above other images)
b. It has a size of 1.0

In addition to any other initialization that you decide to do in your Iceman class, a
Iceman (or one of its base classes) must set itself to be visible using the GraphObject
class’s setVisible() method, e.g.:

setVisible(true);

What the Iceman Must Do During a Tick

The Iceman must be given an opportunity to do something during every tick (in its
doSomething() method). When given an opportunity to do something, the Iceman must
do the following:

1. The Iceman must check to see if it is currently alive. If not, then its
doSomething() method must return immediately – none of the following
steps should be performed.

2. If the Iceman’s 4x4 image currently overlaps any Ice objects within the oil field,
then it will call upon the StudentWorld object to:

a. Remove/destroy the Ice objects from the 4x4 area occupied by the
Iceman (from x, y to x+3,y+3 inclusive)

b. Make a digging sound by playing the SOUND_DIG sound (see the
StudentWorld section of this document for details on how to play a sound).

	

28
	

3. Otherwise, the doSomething() method must check to see if the human player
pressed a key (the section below shows how to check if the user pressed a key,
and if so, how to determine what key the user pressed).

a. If the user presses the Escape key, this allows the user to abort the current
level. In this case, the Iceman object should set itself to completely annoyed
(aka dead). The code in your StudentWorld class should detect that the
Iceman has died and address this appropriately (e.g., replay the level from
scratch, or end the game if the player has run out of lives).

b. If the user presses the spacebar key, then the Iceman will fire a Squirt into the
oil field, assuming they have sufficient water in their squirt gun to do so. The
Iceman will then reduce their water count by 1. To fire a Squirt, the player
must create and add a new Squirt object into the oil field at a location that is
four squares immediately in front of the Iceman, facing the same direction as
the Iceman.

So if the Iceman is at x=10,y=7, and he is facing upward, then the new Squirt
object would be placed at location x=10, y=11, and the Squirt would be
facing upward.

Every time the Iceman fires a Squirt, it must play the sound
SOUND_PLAYER_SQUIRT.

If the initial location where the Squirt starts (i.e., 4 squares in front of the
Iceman) is occupied by one or more Ice objects or is within a radius of 3.0 of a
Boulder object, then the Iceman must still make a squirting noise and will
waste 1 unit of water, but the Iceman must not add any Squirt object into the
oil field and thus no damage can be done to any Protesters (it’s as if the
Iceman shot water against a wall and it immediately dissipated).

Hint: One way to implement this is to have your Iceman create a new Squirt
object in the proper location and facing the proper direction, and then give it
to your StudentWorld to manage (i.e., to animate) along with your other
game objects.

c. If the player wants their Iceman to turn to face a different direction then it is

currently facing (by pressing one of the arrow keys), then the Iceman’s
direction should be adjusted to the indicated direction but the Iceman must not
move in that direction. For example, if the Iceman is currently facing up, and
the player hits the right arrow key, then the Iceman should turn to face right,
but not move right.

d. Else, if the Iceman is already facing in a particular direction and the user hits

the arrow key to move in that same direction, AND the Iceman is allowed to
move in that direction (e.g., there is no Boulder in the way, and the position
doesn’t take the Iceman outside of the oil field), then your code must use the

	

29
	

GraphObject’s moveTo() method to adjust the Iceman’s location by one
square in the indicated direction.

Valid coordinates for the Iceman are from x=0,y=0 to x=60,y=60,
inclusive. Moreover, the Iceman cannot occupy a square that is less than
or equal to a radius of 3 away from the center of any Boulder.

e. If the player presses the ‘Z’ or ‘z’ keys and the Iceman has one or more
sonar charges remaining in his inventory, then this will cause the Iceman
to use his sonar charge to illuminate the contents of the oil field within a
radius of 12 of his location:

i. The count of sonar charges held by the Iceman must be
decremented by 1.

ii. All hidden game objects (e.g., Gold Nuggets or Barrels of oil) that
are within a radius of 12 (e.g., this includes 11.99 squares away)
must be made visible via setVisible() and revealed to the player.

f. If the player presses the TAB key and they have one or more units of gold
in their inventory, then they must add a Gold Nugget object into the oil
field at their current x,y location and reduce their gold count by 1 unit. The
dropped Gold Nugget must have a temporary state and a lifetime of 100
game ticks, and is only pickup-able by Protesters (either Regular or
Hardcore). Such a dropped Nugget will start out in a visible state.

What the Iceman Must Do When It Is Annoyed

When the Iceman is annoyed (i.e., shouted at by a Protester), its hit-points should be
decremented by the appropriate amount (e.g., 2 points). Hint: All objects that can be
annoyed should have some type of method that can be called to annoy them.

If the Iceman’s hit-points reach zero or below due to being annoyed, the Iceman must
set its object’s state to dead, and then play an “I give up” sound effect:
SOUND_PLAYER_GIVE_UP. Note: The StudentWorld class should check the
Iceman’s status during each tick and if he transitions to a dead state, it should return
the appropriate value indicating that the player lost a life.

Getting Input From the User

Since Iceman is a real-time game, you can’t use the typical getline or cin approach to get
a user's key press within the player’s doSomething() method. This would stop your
program and wait until the user types in the proper data and hits the Enter key. This
would make for a really boring game (requiring the user to hit a directional key then hit
Enter, then hit a direction key, then hit Enter, etc.). Instead, you will need to use a special
function that we provide in our GameWorld class (which your StudentWorld class is
derived from) called getKey()to get input from the user1. This function rapidly checks
																																																																				
1	Hint: Since your Iceman class will need to access the getKey() method in the GameWorld class (which is
the base class for your StudentWorld class), your Iceman class (or more correctly, one of its base classes)
will need to obtain a pointer to the StudentWorld class. If you look at our code example, you’ll see how the

	

30
	

to see if the user hit a key. If the user hit a key, the function returns true and the int
variable passed to it is set to the code for the key. Otherwise, the function immediately
returns false, meaning that no key was hit. This function could be used as follows:

void Iceman::doSomething()
{

...
int ch;
if (getWorld()->getKey(ch) == true)
{

// user hit a key this tick!
switch (ch)
{

case KEY_PRESS_LEFT:
... move player to the left ...;
break;

case KEY_PRESS_RIGHT:
... move player to the right ...;
break;

case KEY_PRESS_SPACE:
... add a Squirt in front of the player...;

break;

// etc…
}

}
...

}

Ice

Here are the requirements you must meet when implementing the Ice class.

Ice doesn’t really do much. It just sits still in place.

What Ice Must Do When It Is Created

When it is first created:

1. A Ice object must have an image ID of IID_ICE.
2. Each Ice object must have its x,y location specified for it – the StudentWorld

class can pass in this x,y location when constructing a new Ice object (e.g., when
constructing the entire oil field).

3. Each Ice object must start out facing rightward.
4. Ice has the following graphic parameters:

a. It has an image depth of 3 – meaning its graphic image should always be
in the background (all other game objects have smaller depth values)

b. It has a size of .25, meaning it occupies only a 1x1 square in the oil field.

																																																																				
Iceman’s doSomething() method first gets a pointer to its world via a call to getWorld() (a method in one of
its base classes that returns a pointer to a StudentWorld), and then uses this pointer to call the getKey()
method. 	

	

31
	

In addition to any other initialization that you decide to do in your Ice class, a Ice object must
set itself to be visible using the GraphObject class’s setVisible() method, e.g.:

setVisible(true);

What a Ice Object Must Do During a Tick

It’s ice – what do you expect it to do? It does nothing! As such, it doesn't need to have a
doSomething() method… Or if it does have one, it doesn't need to do anything.

What a Ice Object Must Do When It Is Annoyed

Ice objects cannot be annoyed (i.e., when a Squirt collides with them). After all, if you
were Ice, would you be annoyed if you were squirted with water?

Boulders

You must create a class to represent a Boulder. Boulders basically sit around until the Ice
underneath them has been dug away, and then after a short delay, they fall down until
they hit the bottom of the shaft and disintegrate. Here are the requirements you must
meet when implementing the Boulder class.

What a Boulder object Must Do When It Is Created

When it is first created:

1. The Boulder object must have an image ID of IID_BOULDER.
2. A Boulder object must have its x,y location specified for it – the StudentWorld

class can pass in this x,y location when constructing a new Boulder object.
3. Boulders start out in a stable state (more on this below).
4. Boulders start out facing downward.
5. Boulders have the following graphic parameters:

a. They have an image depth of 1 – behind actors like Protesters, but above
Ice

b. They have a size of 1.0

In addition to any other initialization that you decide to do in your Boulder class, a
Boulder object must set itself to be visible using the GraphObject class’s setVisible()
method, e.g.:

setVisible(true);

What the Boulder Object Must Do During a Tick

Each time the Boulder object is asked to do something (during a tick), it should:

	

32
	

1. Check to see if it’s still alive. If not, its doSomething() method should
immediately return.

2. If the Boulder is currently in the stable state, then it must check to see if there is
any Ice in the 4 squares immediately below it. For example, if the Boulder is at
location x=20,y=30, it would check squares (20,29), (21,29), (22,29) and (23,29)
for Ice. If there is any Ice below the Boulder, it does nothing – after all it’s a
dumb rock. However, if none of the 4 squares beneath the Boulder have any Ice,
then the Boulder must transition into a waiting state:

A. It must enter a waiting state for the next 30 ticks
3. If the Boulder is in a waiting state and 30 ticks have elapsed, then it must

transition into a falling state and play the sound SOUND_FALLING_ROCK.
4. If the Boulder is in a falling state, then:

A. It must continue to move downward one square during each tick until it
either (a) hits the bottom of the oil field (i.e., it tries to move to y=-1), (b)
runs into the top of another Boulder, or (c) it runs into Ice (i.e., by
moving down a square, the Boulder would overlap over one or more Ice
objects). When any of the above conditions are met the Boulder must set
its state to dead so it can be removed from the game at the end of the
current tick.

B. If the Boulder comes within a radius of 3 (i.e. less than or equal to 3
squares, so 2.99 would count) of any Protester(s) or the Iceman while
falling, it must cause 100 points of annoyance to those actors (effectively
completely annoying them in one fell swoop). The Boulder will continue
falling down as described above, even if it annoys one or more Protesters
on its way down (i.e., it won’t stop falling if it runs into a Protester).
However, if the Boulder annoys the Iceman, the player will instantly lose
a life.

What a Boulder Must Do When It Is Annoyed

Boulders cannot be annoyed!

Squirt

You must create a class to represent a Squirt from a squirt gun. A Squirt object will be
introduced into the oil field by the Iceman when he shoots his squirt gun, and will then
travel 4 squares in its initially-facing direction or until it hits any Ice, a Protester of any
type, or a Boulder. Here are the requirements you must meet when implementing the
Squirt class.

What a Squirt object Must Do When It Is Created

When it is first created:

1. The Squirt object must have an image ID of IID_WATER_SPURT.
2. All Squirt objects must have their x,y location specified for them by the

	

33
	

Iceman.
3. All Squirt objects must have their direction specified for them by the Iceman.
4. All Squirt objects start off with an initial travel distance of 4 squares
5. All Squirt objects have the following graphic parameters:

a. They have an image depth of 1 – behind actors like Protesters, but above
Ice

b. They have a size of 1.0

In addition to any other initialization that you decide to do in your Squirt class, a Squirt
object must set itself to be visible using the GraphObject class’s setVisible() method, e.g.:

setVisible(true);

What the Squirt Object Must Do During a Tick

Each time the Squirt object is asked to do something (during a tick):

1. If a Squirt is within a radius of 3.0 of one or more Protesters (up to and including
a distance of 3.0 squares away), it will cause 2 points of annoyance to these
Protester(s), and then immediately set its state to dead, so it can be removed from
the oil field at the end of the tick.

2. If a Squirt has traveled through its full travel distance, then it immediately sets its state
to dead, so it can be removed from the oil field at the end of the current tick.

3. Otherwise, the Squirt must check to see if it can move one square in its currently-
facing direction. If this target location is occupied by either Ice or a Boulder, then
the Squirt immediately sets its state to dead so it can be removed from the oil
field at the end of the current tick.

4. Otherwise, the Squirt moves one square forward in its currently-facing direction,
and then returns.

What a Squirt Must Do When It Is Annoyed

Squirts can’t be annoyed, silly.

Barrel of Oil

You must create a class to represent a Barrel of oil that needs to be picked up by the
Iceman. Here are the requirements you must meet when implementing the Barrel
class.

What a Barrel object Must Do When It Is Created

When it is first created:

1. All Barrels must have an image ID of IID_BARREL.

	

34
	

2. All Barrels must have their x,y location specified for them when they are created.
3. All Barrels must start off facing rightward.
4. All Barrels start out invisible – they must be discovered (by the Iceman walking

in close proximity to them) before they become visible.
5. Barrels have the following graphic parameters:

a. They have an image depth of 2 – behind actors like Protesters, but above
Ice

b. They have a size of 1.0

What the Barrel Object Must Do During a Tick

Each time the Barrel object is asked to do something (during a tick):

1. The object must check to see if it is currently alive. If not, then its doSomething()

method must return immediately – none of the following steps should be performed.
2. Otherwise, if the Barrel is not currently visible AND the Iceman is within a radius of

4.0 of it (<= 4.00 units away), then:
a. The Barrel must make itself visible with the setVisible() method.
b. The Barrel’s doSomething() method must immediately return.

2. Otherwise, if the Barrel is within a radius of 3.0 (<= 3.00 units away) from the
Iceman, then the Barrel will activate, and:

a. The Barrel must set its state to dead (so that it will be removed by your
StudentWorld class from the game at the end of the current tick).

b. The Barrel must play a sound effect to indicate that the player picked up the
Goodie: SOUND_FOUND_OIL.

c. The Barrel must increase the player’s score by 1000 points.
d. If necessary, the Barrel may inform the StudentWorld object that it was

picked up. Once all Barrels on the level have been picked up, the player
finishes the level and may advance to the next level.

What an Barrel Must Do When It Is Annoyed

Barrels can’t be attacked and will not block Squirts from the Iceman’s squirt gun
(they pass right over the Barrels).

Gold Nugget

You must create a class to represent a Gold Nugget. If the Iceman picks up a Gold
Nugget, he can then drop it into the oil field at a later time to bribe a Protester (of either
type). Here are the requirements you must meet when implementing the Gold Nugget
class.

What a Gold Nugget object Must Do When It Is Created

	

35
	

When it is first created:

1. All Gold Nuggets must have an image ID of IID_GOLD.
2. All Gold Nuggets must have their x,y location specified for them when they are

created.
3. All Gold Nuggets must start off facing rightward.
4. A Gold Nugget may either start out invisible or visible – this must be specified by

the code that creates the Nugget, depending on the context of its creation. Nuggets
buried within the Ice of the oil field always start out invisible, whereas Nuggets
dropped by the Iceman start out visible.

5. A Gold Nugget will either be pickup-able by the Iceman or pickup-able by
Protesters, but not both. This state must be specified by the code that creates the
Gold Nugget object.

6. A Gold Nugget will either start out in a permanent state (where they will remain
in the oil field until they are picked up by the Iceman or the level ends) or a
temporary state (where they will only remain in the oil field for a limited number
of ticks before disappearing or being picked up by a Protester). This state must be
specified by the code that creates the Gold Nugget object.

7. Gold Nuggets have the following graphic parameters:
a. They have an image depth of 2 – behind actors like Protesters, but above

Ice
b. They have a size of 1.0

What the Gold Nugget Object Must Do During a Tick

Each time the Gold Nugget object is asked to do something (during a tick):
1. The object must check to see if it is currently alive. If not, then its doSomething()

method must return immediately – none of the following steps should be performed.
2. Otherwise, if the Gold Nugget is not currently visible AND the Iceman is within a

radius of 4.0 of it (<= 4.00 units away), then:
e. The Gold Nugget must make itself visible with the setVisible() method.
f. The Gold Nugget doSomething() method must immediately return.

3. Otherwise, if the Gold Nugget is pickup-able by the Iceman and it is within a
radius of 3.0 (<= 3.00 units away) from the Iceman, then the Gold Nugget will
activate, and:

a. The Gold Nugget must set its state to dead (so that it will be removed by your
StudentWorld class from the game at the end of the current tick).

b. The Gold Nugget must play a sound effect to indicate that the Iceman
picked up the Goodie: SOUND_GOT_GOODIE.

c. The Gold Nugget increases the player’s score by 10 points (This increase can
be performed by the Iceman class or the Gold Nugget class).

d. The Gold Nugget must tell the Iceman object that it just received a new
Nugget so it can update its inventory.

4. Otherwise, if the Gold Nugget is pickup-able by Protesters and it is within a radius of
3.0 (<= 3.00 units away) from a Protester, then the Gold Nugget will activate, and:

	

36
	

a. The Gold Nugget must set its state to dead (so that it will be removed by your
StudentWorld class from the game at the end of the current tick).

b. The Gold Nugget must play a sound effect to indicate that the Iceman
picked it up: SOUND_PROTESTER_FOUND_GOLD.

c. The Gold Nugget must tell the Protester object that it just received a new
Nugget so it can react appropriately (e.g., be bribed).

d. The Gold Nugget increases the player’s score by 25 points (This increase can
be performed by the Protester class or the Gold Nugget class).

Note: A Gold Nugget can only bribe a single Protester (either Regular or
Hardcore) before disappearing from the game. If multiple Protesters are within
the activating radius of the Nugget, then only one of the Protesters must be
bribed.

5. If the Gold Nugget has a temporary state, then it will check to see if its tick lifetime

has elapsed, and if so it must set its state to dead (so that it will be removed by your
StudentWorld class from the game at the end of the current tick).

What a Gold Nugget Must Do When It Is Annoyed

Gold Nuggets can’t be attacked and will not block Squirts from the Iceman’s squirt
gun (they pass right over the Nuggets).

Sonar Kit

You must create a class to represent a Sonar Kit. If the Iceman picks up a Sonar Kit, he can
use it to scan the oil field at a later time to locate buried Gold Nuggets and Barrels of oil.
Here are the requirements you must meet when implementing the Sonar Kit class.

What a Sonar Kit object Must Do When It Is Created

When it is first created:

1. All Sonar Kits must have an image ID of IID_SONAR.
2. All Sonar Kits must have their x,y location specified for them when they are

created.
3. All Sonar Kits must start off facing rightward.
4. All Sonar Kits starts out visible.
5. A Sonar Kit is only pickup-able by the Iceman.
6. A Sonar Kit will always start out in a temporary state (where they will only

remain in the oil field for a limited number of ticks before disappearing) – the
number of ticks T a Sonar Kit will exist can be determined from the following
formula:

T = max(100, 300 – 10*current_level_number)

	

37
	

7. Sonar Kits have the following graphic parameters:

a. They have an image depth of 2 – behind actors like Protesters, but above
Ice

b. They have a size of 1.0

In addition to any other initialization that you decide to do in your Sonar Kit class, a
Sonar Kit object must set itself to be visible using the GraphObject class’s setVisible()
method, e.g.:

setVisible(true);

What the Sonar Kit Object Must Do During a Tick

Each time the Sonar Kit object is asked to do something (during a tick):

1. The object must check to see if it is currently alive. If not, then its doSomething()

method must return immediately – none of the following steps should be performed.
2. Otherwise, if the Sonar Kit is within a radius of 3.0 (<= 3.00 units away) from the

Iceman, then the Sonar Kit will activate, and:
a. The Sonar Kit must set its state to dead (so that it will be removed by your

StudentWorld class from the game at the end of the current tick).
b. The Sonar Kit must play a sound effect to indicate that the Iceman picked up

the Goodie: SOUND_GOT_GOODIE.
c. The Sonar Kit must tell the Iceman object that it just received a new Sonar Kit

so it can update its inventory.
d. The Sonar Kit increases the player’s score by 75 points (This increase can be

performed by the Iceman class or the Sonar Kit class).
3. Since the Sonar Kit is always in a temporary state, it will check to see if its tick

lifetime has elapsed, and if so it must set its state to dead (so that it will be removed
by your StudentWorld class from the game at the end of the current tick).

What an Sonar Kit Must Do When It Is Annoyed

Sonar Kits can’t be annoyed and will not block Squirts from the Iceman’s squirt gun.

Water Pool

You must create a class to represent a Water Pool. If the Iceman picks up Water, he can
use it to increase the contents of his squirt gun. Here are the requirements you must meet
when implementing the Water Pool class.

What a Water Pool object Must Do When It Is Created

	

38
	

When it is first created:

1. All Water Pools must have an image ID of IID_WATER_POOL.
2. All Water Pools must have their x,y location specified for them when they are

created.
3. All Water Pools must start off facing rightward.
4. All Water Pools start out visible.
5. A Water Pool is only pickup-able by the Iceman.
6. A Water Pool will always start out in a temporary state (where they will only

remain in the oil field for a limited number of ticks before disappearing) – the
number of ticks T that a Water Pool will exist can be determined from the
following formula:

T = max(100, 300 – 10*current_level_number)

7. Water Pools have the following graphic parameters:

a. They have an image depth of 2 – behind actors like Protesters, but above
Ice

b. They have a size of 1.0

In addition to any other initialization that you decide to do in your Water Pool class, a
Water Pool object must set itself to be visible using the GraphObject class’s setVisible()
method, e.g.:

setVisible(true);

What a Water Pool Object Must Do During a Tick

Each time a Water pool object is asked to do something (during a tick):

1. The object must check to see if it is currently alive. If not, then its doSomething()

method must return immediately – none of the following steps should be performed.
2. Otherwise, if the Water pool is within a radius of 3.0 (<= 3.00 units away) from the

Iceman, then the Water pool will activate, and:
e. The Water pool must set its state to dead (so that it will be removed by your

StudentWorld class from the game at the end of the current tick).
f. The Water pool must play a sound effect to indicate that the Iceman picked up

the Goodie: SOUND_GOT_GOODIE.
g. The Water pool must tell the Iceman object that it just received 5 new

squirts of water so it can update its inventory.
h. The Water pool increases the player’s score by 100 points (This increase can

be performed by the Iceman class or the Sonar Kit class).

	

39
	

3. Since the Pool of Water is always in a temporary state, it will check to see if its tick
lifetime has elapsed, and if so it must set its state to dead (so that it will be removed
by your StudentWorld class from the game at the end of the current tick).

What a Water Pool Must Do When It Is Annoyed

Water Pools can’t be annoyed and will not block Squirts from the Iceman’s squirt
gun.

Regular Protesters

You must create a class to represent a Regular Protester. Here are the requirements you
must meet when implementing a Regular Protester class.

What a Regular Protester object Must Do When It Is Created

When it is first created:

1. Each Regular Protester must have an image ID of IID_PROTESTER.
2. Each Regular Protester must start out facing left.
3. Each Regular Protester must decide how many squares,

numSquaresToMoveInCurrentDirection, it will decide to move left before
possibly switching its direction. This value must be: 8 <=
numSquaresToMoveInCurrentDirection <= 60

4. Each Regular Protester starts out with 5 hit-points.
5. Each Regular Protester starts out NOT in a leave-the-oil-field state.
6. Each Regular Protester have the following graphic parameters:

a. It has an image depth of 0 – they’re always in the foreground
b. It has a size of 1.0

In addition to any other initialization that you decide to do in your Regular Protester
class, a Regular Protester object must set itself to be visible using the GraphObject
class’s setVisible() method, e.g.:

setVisible(true);

What a Regular Protester Must Do During a Tick

Regular Protesters, unlike the player, don’t necessarily get to take an action during every
tick of the game (this is to make the game easier to play, since if Regular Protesters
moved once every tick, they’d move much faster than the typical player can think and hit
the keys on the keyboard). The Regular Protester must therefore compute a value
indicating how often they’re allowed to take an action (e.g., once every N ticks). This
number of ticks (also known as “resting ticks”) may be computed as follows:

	

40
	

int ticksToWaitBetweenMoves = max(0, 3 – current_level_number/4)

So if the value of ticksToWaitBetweenMoves was 3, then the Regular Protester must
“rest” for 3 ticks and may perform its normal behavior every 4th tick. If the value is zero,
then the Regular Protester does something during every tick of the game.

Here is what a Regular Protester must do during *every* tick:

1. The Regular Protester must check to see if it is currently alive. If not, then its
doSomething() method must return immediately – none of the following steps
should be performed.

2. If the Regular Protester is in a “rest state” during the current tick, it must do
nothing other than update its resting tick count, and immediately return.

3. Otherwise, if the Regular Protester is in a leave-the-oil-field state (because their
hit points reached zero due to being repeatedly squirted by the Iceman’s squirt gun
or bonked by a falling Boulder), then:

a. If the Regular Protester is at its exit point (at location x=60, y=60) then it
will immediately set its status to dead so that it will be removed from the
game at the end of the current tick (by your StudentWorld class).

b. Otherwise, the Regular Protester must move one square closer to its exit
point (at x=60, y=60). It must determine what direction to move based on
a queue-based maze-searching algorithm like the one we learned in class.
This should be done using concurrent programming (i.e., threads, async).
The Regular Protester may not walk through Ice or Boulders to reach its
exit point (meaning that none of the 16 squares that comprise the 4x4
Regular Protester icon may overlap with an Ice object and that the
Regular Protester must not come within (within means <=) a distance of
3.0 units of any Boulders). Hint: It’s inefficient for every single Regular
Protester to try to figure out its own optimal path to the exit, so see if you
can figure out a way to compute a single data structure that enables all
Protesters to quickly determine their optimal path to their common exit
point of 60,60, no matter where they are located in the oil field.

c. After moving one step toward their exit point, the Regular Protester will
return immediately. It will not perform any of the following steps.

4. Otherwise, the Regular Protester will check to see if they are within a distance of
4 units of the Iceman, AND they are currently facing in the Iceman’s direction2. If
both are true and the Regular Protester hasn’t shouted within its last non-resting
15 ticks3, then the Regular Protester will:

a. Play the shouting sound: SOUND_PROTESTER_YELL
b. Inform the Iceman that he’s been annoyed for a total of 2 annoyance

points (deducting 2 points from the Iceman’s hit points, and possibly

																																																																				
2 	For example, if the Iceman is at location x=0,y=10 and the Regular Protester is facing left at location
x=4, with a 6<=y<=14, then the Regular Protester would be facing the Iceman. Similarly, a Regular
Protester at x=3, y=9 facing up would also be facing the Iceman.
3 A non-resting tick is one in which the Protester was not resting, and its doSomething() method actually
was able to perform a substantive activity like moving, shouting, etc.

	

41
	

causing the Iceman to become sufficiently annoyed to quit the level (aka
die)).

c. Update some state variable in a manner that prevents this Regular
Protester from shouting again for at least 15 non-resting ticks.

d. Return immediately.
5. Otherwise, if the Regular Protester:

a. Is in a straight horizontal or vertical line of sight to the Iceman (even if the
Regular Protester isn’t currently facing the Iceman), and

b. Is more than 4 units away from the Iceman – that is, the radius from the Regular
Protester and the Iceman is greater than 4.0 units away, and

c. Could actually move the entire way to the Iceman with no Ice or
Boulders blocking its path4 (assuming it kept walking straight over the
next N turns),

Then the Regular Protester will:
a. Change its direction to face in the direction of the Iceman, AND then take

one step toward him.
b. The Regular Protester will set its numSquaresToMoveInCurrentDirection

value to zero, forcing it to pick a new direction/distance to move during its
next non-resting tick (unless of course, the Regular Protester still sees the
Iceman in its line of sight, in which case it will continue to move toward the
Iceman).

c. Then the Regular Protester will immediately return.
6. Otherwise, the Regular Protester can’t directly see the Iceman. As such, it will

decrement its numSquaresToMoveInCurrentDirection variable by one. If the Regular
Protester has finished walking numSquaresToMoveInCurrentDirection steps in its
currently-selected direction (i.e., numSquaresToMoveInCurrentDirection <= 0),
then:

a. The Regular Protester will pick a random new direction to move (up,
down, left or right).

b. If the random direction is blocked either by Ice or a Boulder such that it
can’t take even a single step in that chosen direction, then it will select a
different direction and check it for blockage (it will continue checking
directions until it has picked a direction that is not blocked).

c. The Regular Protester will then change its direction to this new chosen
direction.

d. The Regular Protester will then pick a new value for
numSquaresToMoveInCurrentDirection that will govern how far it should
move in the selected direction over the next
numSquaresToMoveInCurrentDirection non-resting ticks. The value must be
such that: 8 <= numSquaresToMoveInCurrentDirection <= 60.

e. The Regular Protester will then continue with step 8.
7. Otherwise, if the Regular Protester:

a. Is sitting at an intersection where it could turn and move at least one square in
a perpendicular direction from its currently facing direction (e.g., it is

																																																																				
4 A Regular Protester cannot move to a location that is within a radius of 3 (<= 3.0) units of a Boulder.

	

42
	

currently facing left, and is at a junction where it could turn and move one
step either upward/downward without being blocked by Ice or a
Boulder), and

b. The Regular Protester hasn’t made a perpendicular turn in the last 200 non-
resting ticks.

Then the Regular Protester will:
a. Determine which of the two perpendicular directions are viable (a viable

direction is one that allows movement of at least one square without the
Regular Protester being blocked by Ice or a Boulder).

b. Pick a viable perpendicular direction. If both perpendicular directions are
viable, then pick one of the two choices randomly.

c. Set its direction to the selected perpendicular direction.
d. Pick a new value for numSquaresToMoveInCurrentDirection that will govern

how far it should move in the selected perpendicular direction over the next
numSquaresToMoveInCurrentDirection non-resting ticks. The value must be
such that: 8 <= numSquaresToMoveInCurrentDirection <= 60.

e. Remember that it made a perpendicular turn so that it doesn’t make
another perpendicular turn for at least 200 more non-resting ticks.

f. Continue on with the next step.
8. Finally, the Regular Protester will then attempt to take one step in its currently

facing direction (which, by the way, might have just been changed by one of the
last few steps above).

9. If the Regular Protester is for some reason blocked from taking a step in its
currently facing direction, it will set the numSquaresToMoveInCurrentDirection
to zero, resulting in a new direction being chosen during the Regular Protester’s
next non-resting tick (but not the current tick – the Regular Protester must do
nothing during the current tick).

Note that only Ice and Boulders block a Regular Protester from moving. Regular
Protesters can occupy the same square as all other game objects including the Iceman
and other Protesters.

What the Regular Protester Must Do When It Is Annoyed

A Regular Protester can’t be further annoyed once it is in a leave-the-oil-field state – this
means it can’t be squirted or bonked by Boulders while in this state.

When the Regular Protester is annoyed (e.g., by being hit by a Squirt object fired by the
Iceman or being bonked by a Boulder), its hit-points should be decremented by the
appropriate amount (the amount is specified elsewhere in this document).

If, after its hit-points have been decremented, the Regular Protester hasn’t been
completely annoyed (to the point it wants to leave the oil field) then it must play a sound
of: SOUND_PROTESTER_ANNOYED. It will then be “stunned” and placed in a resting
state for N resting ticks, where:

	

43
	

N = max(50, 100 – current_level_number * 10)

Note: This essentially extends the Regular Protester’s normal resting state to N ticks.
Remember, that when in a resting state, the Regular Protester will immediately return
when its doSomething() method is called.

On the other hand, if the Regular Protester’s hit-points reach zero or below due to being
annoyed for any reason, the Regular Protester:

1. Transitions into a leave-the-oil-field state.
2. Plays an “I give up” sound effect: SOUND_PROTESTER_GIVE_UP.
3. Sets its resting tick count to zero, ensuring that it will do something on the very

next game tick, even if it was previously stunned or otherwise in a resting state.
4. If the Regular Protester was annoyed due to being bonked by a Boulder, then it

will increase the player’s score by 500 points.
5. On the other hand, if the Regular Protester was annoyed due to being squirted

repeatedly, then it will increase the player’s score by 100 points.

What the Regular Protester Must Do When It Picks up a Gold Nugget

When a Gold Nugget has activated due to being stepped upon by a Regular Protester, it will
notify the Regular Protester that it has picked up a Nugget. The Regular Protester must do
the following in response to being notified that it has just stepped upon a Nugget:

1. The Regular Protester plays an “I'm rich” sound effect:
SOUND_PROTESTER_FOUND_GOLD.

2. The Regular Protester increases the player’s score by 25 points for the bribery.
3. The Regular Protester will immediately be bribed and transition into a leave-the-

oil-field state.

Hardcore Protesters

You must create a class to represent a Hardcore Protester. Here are the requirements you
must meet when implementing a Hardcore Protester class.

What a Hardcore Protester object Must Do When It Is Created

When it is first created:

1. Each Hardcore Protester must have an image ID of
IID_HARD_CORE_PROTESTER.

2. Each Hardcore Protester must start out facing left.

	

44
	

3. Each Hardcore Protester must decide how many squares,
numSquaresToMoveInCurrentDirection, it will decide to move left before
possibly switching its direction. This value must be: 8 <=
numSquaresToMoveInCurrentDirection <= 60

4. Each Hardcore Protester starts out with 20 hit-points.
5. Each Hardcore Protester starts out NOT in a leave-the-oil-field state.
6. Each Hardcore Protester have the following graphic parameters:

a. It has an image depth of 0 – they’re always in the foreground
b. It has a size of 1.0

In addition to any other initialization that you decide to do in your Hardcore Protesters
class, a Hardcore Protester object must set itself to be visible using the GraphObject
class’s setVisible() method, e.g.:

setVisible(true);

What a Hardcore Protester Must Do During a Tick

Hardcore Protesters, unlike the player, don’t necessarily get to take an action during
every tick of the game (this is to make the game easier to play, since if Hardcore
Protesters moved once every tick, they’d move much faster than the typical user can
think and hit the keys on the keyboard). The Hardcore Protester must therefore compute
a value indicating how often they’re allowed to take an action (e.g., once every N ticks).
This number of ticks (also known as “resting ticks”) may be computed as follows:

int ticksToWaitBetweenMoves = max(0, 3 – current_level_number/4)

So if the value of ticksToWaitBetweenMoves was 3, then the Hardcore Protester must
“rest” for 3 ticks and may perform its normal behavior every 4 th tick. If the value is
zero, then the Hardcore Protester does something during every tick of the game.

Here is what a Hardcore Protester must do during *every* tick:

1. The Hardcore Protester must check to see if it is currently alive. If not, then its
doSomething() method must return immediately – none of the following steps
should be performed.

2. If the Hardcore Protester is in a “rest state” during the current tick, it must do
nothing other than update its resting tick count, and immediately return.

3. Otherwise, if the Hardcore Protester is in a leave-the-oil-field state (because
their hit points reached zero due to being repeatedly squirted by Squirt objects
fired from the Iceman’s squirt gun or bonked by a falling Boulder), then:

a. If the Hardcore Protester is at its exit point (at location x=60, y=60) then
it will immediately set its status to dead so that it will be removed from the
game at the end of the current tick (by your StudentWorld class).

b. Otherwise, the Hardcore Protester must move one square closer to its exit
point (at x=60, y=60). It must determine what direction to move based on a

	

45
	

queue-based maze-searching algorithm like the one we learned in class. This
should be done using concurrent programming (i.e., threads, async). The
Hardcore Protester may not walk through Ice or Boulders to reach its exit
point (meaning that none of the 16 squares that comprise the 4x4
Hardcore Protester icon may overlap with Ice and that the Hardcore
Protester must not come within (within means <=) a distance of 3.0 units
of any Boulders). Hint: It’s inefficient for every single Hardcore Protester
to try to figure out its own optimal path to their common exit point of
60,60, so see if you can figure out a way to compute a single data structure
that enables all Protesters to quickly determine their optimal path to their
common exit, no matter where they are located in the oil field.

c. After moving one step toward their exit point, the Hardcore Protester will
return immediately. It will not perform any of the following steps.

4. Otherwise, the Hardcore Protester will check to see if they are within a distance
of 4 units of the Iceman, AND they are currently facing in the Iceman’s direction5.
If both are true and the Hardcore Protester hasn’t shouted within the last non-
resting 15 ticks, then the Hardcore Protester will:

a. Play the shouting sound: SOUND_PROTESTER_YELL
b. Inform the Iceman that he’s been annoyed for a total of 2 annoyance

points (deducting 2 points from the Iceman’s hit points, and possibly
causing the Iceman to become sufficiently annoyed to quit the level (aka
die)).

c. Update some state variable in a manner that prevents this Hardcore
Protester from shouting again for at least 15 non-resting ticks.

d. Return immediately.
5. Otherwise, if the Hardcore Protester is more than 4.0 units away from the

Iceman, the Hardcore Protester will:
a. Compute a value M, such that M = 16 + current_level_number * 2
b. If the Hardcore Protester is less than or equal to a total of M legal

horizontal or vertical moves away from the current location of the Iceman
(as can be determined using the same basic queue-based maze-searching
algorithm described in Hardcore Protester item 3.b above), then the
Hardcore Protester will sense the Iceman’s cell phone signal and know
where he is. This is true even if the Hardcore Protester has no direct line
of sight to the Iceman, so long as he can be reached in M moves without
digging through Ice or going through a Boulder. In such a situation, the
Hardcore Protester will:

i. Determine which horizontal/vertical direction to move in (as
dictated by its maze-searching algorithm) such that if it were to
make such a move it would be one square closer to the Iceman.

ii. Change its current direction to face this new direction.

																																																																				
5 For example, if the Iceman is at location x=0,y=10 and the Regular Protester is facing left at location
x=4, with a 6<=y<=14, then the Regular Protester would be facing the Iceman. Similarly, a Regular
Protester at x=3, y=9 facing up would also be facing the Iceman.

	

	

46
	

iii. Move one square in this direction such that after the move it is one
square closer to the Iceman’s current location.

iv. Return immediately.
6. Otherwise, if the Hardcore Protester:

a. Is in a straight horizontal or vertical line of sight to the Iceman (even if the
Hardcore Protester isn’t currently facing the Iceman), and

b. Is more than 4 units away from the Iceman – that is the radius from the
Hardcore Protester and the Iceman is greater than 4.0 units away, and

c. Could actually move the entire way to the Iceman with no Ice or
Boulders blocking its path6 (assuming it kept walking straight over the
next N turns),

Then the Hardcore Protester will:
d. Turn to face the Iceman and take one step toward him.
e. The Hardcore Protester will set its numSquaresToMoveInCurrentDirection

value to zero, forcing it to pick a new direction/distance to move during its
next non-resting tick (unless of course, the Hardcore Protester still sees
the Iceman in its line of sight).

f. Then the Hardcore Protester will immediately return.
7. Otherwise, the Hardcore Protester will decrement its

numSquaresToMoveInCurrentDirection variable by one. If the Hardcore Protester
has finished walking its numSquaresToMoveInCurrentDirection steps in its
currently-selected direction (i.e., numSquaresToMoveInCurrentDirection <= 0),
then:

a. The Hardcore Protester will pick a random new direction to move in (up,
down, left or right).

b. If the random direction is blocked either by Ice or a Boulder such that it
can’t take even a single step in that chosen direction, then it will select a
different direction and check it for blockage (it will continue checking
directions until it has picked a direction that is not blocked).

c. The Hardcore Protester will then change its direction to this new chosen
direction.

d. The Hardcore Protester will then pick a new value for
numSquaresToMoveInCurrentDirection that will govern how far it should
move in the selected direction over the next
numSquaresToMoveInCurrentDirection non-resting ticks. The value must be
such that: 8 <= numSquaresToMoveInCurrentDirection <= 60.

e. The Hardcore Protester will then continue with step 8.
8. Otherwise, if the Hardcore Protester:

a. Is sitting at an intersection where it could turn and move at least one square in
a perpendicular direction from its currently facing direction (e.g., it is
currently facing left, and is at a junction where it could turn and move one
step either upward/downward without being blocked by Ice or a
Boulder), and

																																																																				
6 A Regular Protester cannot move to a location that is within a radius of 3 (<= 3.0) units of a Boulder.

	

47
	

b. The Hardcore Protester hasn’t made a perpendicular turn in the last 200 non-
resting ticks.

Then the Hardcore Protester will:
c. Determine which of the two perpendicular directions are viable (a viable

direction is one that allows movement of at least one square without the
Hardcore Protester being blocked by Ice or a Boulder).

d. Pick a viable perpendicular direction. If both perpendicular directions are
viable, then pick one of the two choices randomly.

e. Set its direction to the selected perpendicular direction.
f. Pick a new value for numSquaresToMoveInCurrentDirection that will govern

how far it should move in the selected perpendicular direction over the next
numSquaresToMoveInCurrentDirection non-resting ticks. The value must be
such that: 8 <= numSquaresToMoveInCurrentDirection <= 60.

g. Remember that it made a perpendicular turn so that it doesn’t make
another perpendicular turn for at least 200 more non-resting ticks.

h. Continue on with the next step.
9. Finally, the Hardcore Protester will then attempt to take one step in its currently

facing direction (which, by the way, might have just been changed by one of the
last few steps above).

10. If the Hardcore Protester is for some reason blocked from taking a step in its
currently facing direction, it will set the numSquaresToMoveInCurrentDirection
to zero, resulting in a new direction being chosen during the Hardcore Protester’s
next non-resting tick (but not the current tick – the Hardcore Protester must do
nothing during the current tick).

Note that only Ice and Boulders block a Hardcore Protester from moving. Hardcore
Protesters can occupy the same square as all other game objects including the Iceman
and other Protesters.

What the Hardcore Protester Must Do When It Is Annoyed

A Hardcore Protester can’t be further annoyed once it is in a leave-the-oil-field state –
this means it can’t be squirted or bonked by Boulders while in this state.

When the Hardcore Protester is annoyed (e.g., by being squirted by the Iceman or
being bonked by a Boulder), its hit-points should be decremented by the appropriate
amount (the amount is specified elsewhere in this document).

If, after its hit-points have been decremented, the Hardcore Protester hasn’t been
completely annoyed (to the point it wants to leave the oil field) then it must play a sound
of: SOUND_PROTESTER_ANNOYED. It will then be “stunned” and placed in a resting
state for N resting ticks, where:

N = max(50, 100 – current_level_number * 10)

	

48
	

Note: This essentially extends the Hardcore Protester’s normal resting state to N ticks.
Remember, that when in a resting state, the Hardcore Protester will immediately return
when its doSomething() method is called.

On the other hand, if the Hardcore Protester’s hit-points reach zero or below due to
being annoyed for any reason, the Hardcore Protester:

1. Transitions into a leave-the-oil-field state.
2. Plays an “I give up” sound effect: SOUND_PROTESTER_GIVE_UP.
3. Sets its resting tick count to zero, ensuring that it will do something on the very

next game tick, even if it was previously stunned or otherwise in a resting state.
4. If the Hardcore Protester was annoyed due to being bonked by a Boulder, then it

will increase the player’s score by 500 points.
5. On the other hand, if the Hardcore Protester was annoyed into submission due to

being squirted repeatedly, then it will increase the player’s score by 250 points.

What the Hardcore Protester Must Do When It Picks up a Gold Nugget

When a Gold Nugget has activated due to being stepped upon by a Hardcore Protester, it
will notify the Hardcore Protester that it has picked up a Nugget. The Hardcore
Protester must do the following in response to being notified that it has just stepped upon
a Nugget:

1. The Hardcore Protester plays an “I'm rich!” sound effect:
SOUND_PROTESTER_FOUND_GOLD.

2. The Hardcore Protester increases the player’s score by 50 points for the bribery.
3. The Hardcore Protester will become fixated on the Nugget and will pause to stare

at it (just as if he/she were in a resting state – doing nothing else) for the
following number of game ticks:

ticks_to_stare = max(50, 100 – current_level_number * 10)

4. After the specified number of game ticks, the Hardcore Protester will become

bored with the Nugget and continue to pursue the Iceman using its normal
algorithm, as described above.

Don’t know how or where to start? Read this!

When working on your first large object oriented program, you’re likely to feel
overwhelmed and have no idea where to start; in fact, it’s likely that many students won’t
be able to finish their entire program. Therefore, it’s important to attack your program
piece by piece rather than trying to program everything at once.

	

49
	

Students who try to program everything at once rather than program incrementally
always fail to solve this project, so don’t do it!

Instead, try to get one thing working at a time. Here are some hints:

1. When you define a new class, try to figure out what public member functions it
should have. Then write dummy “stub” code for each of the functions that you’ll
fix later:

class foo

{
public:

// dummy version int chooseACourseOfAction() { return 0; }

};

Try to get your project compiling with these dummy functions first, then you can
worry about filling in the real code later.

2. Once you’ve got your program compiling with dummy functions, then start by
replacing one dummy function at a time. Update the function, re-compile your
program, test your new function, and once you’ve got it working, proceed to the
next function.

3. Make backups of your working code frequently. Any time you get a new
feature working, make a backup of all your .cpp and .h files just in case you
screw something up later.

If you use this approach, you’ll always have something working that you can test and
improve upon. If you write everything at once, you’ll end up with hundreds or thousands
of errors and just get frustrated! So don’t do it.

Building the Game

The game assets (i.e., image and level data files) are in a folder named Assets. The way
we’ve written the main routine, your program will look for this folder in a standard
place (described below for Windows and Mac OS X). A few students may find that their
environment is set up in a way that prevents the program from finding the folder. If that
happens to you, change the string literal "Assets" in main.cpp to the full path name of
wherever you choose to put the folder (e.g., "Z:/Iceman/Assets" or
"/Users/fred/Iceman/Assets").

To build the game, follow these steps:

For Windows

	

50
	

Unzip the Iceman-skeleton-windows.zip archive into a folder on your hard drive.
Double-click on Iceman.sln to start Visual Studio.

If you build and run your program from within Visual Studio, the Assets folder should be
in the same folder as your .cpp and .h files. On the other hand, if you launch the program
by double-clicking on the executable file, the Assets folder should be in the same folder
as the executable.

For Mac OS X

Unzip the Iceman-skeleton-mac.zip archive into a folder on your hard drive.
Double-click on our provided Iceman.xcodeproj to start Xcode.
If you build and run your program from within Xcode, the Assets directory should be in the
directory yourProjectDir/DerivedData/yourProjectName/BuildProducts/Debug (e.g.,
/Users/fred/Iceman/DerivedData/Iceman/Build/Products/Debug). On the other hand, if
you launch the program by double-clicking on the executable file, the Assets directory
should be in your home directory (e.g., /Users/fred).

What to Turn In

Part #1

Ok, so we know you’re scared to death about this project and don’t know where to start.
So, we’re going to incentivize you to work incrementally rather than try to do everything
all at once. For the first part of Project 2, your job is to build a really simple version of
the Iceman game that implements maybe 15% of the overall project. You must program:

1. A class that can serve as the base class for all of your game’s objects (e.g.,
the Iceman, Regular Protesters, Hardcore Protesters, Barrels of oil,
Nuggets, Ice, etc.):

i. It must have a simple constructor and destructor.
ii. It must be derived from our GraphObject class.

iii. It (or its base class) must make itself visible via a call to
setVisible(true);

iv. It must have a virtual method called doSomething() that can be
called by the World to get one of the game’s actors to do
something.

v. You may add other public/private methods and private member
variables to this base class, as you see fit.

2. A Ice class, derived in some way from the base class described in 1
above:

	

51
	

i. It must have a simple constructor and destructor that initialize a
new Ice object.

ii. It must have an Image ID of IID_ICE.
iii. You may add any set of public/private methods and private

member variables to your Ice class as you see fit, so long as you
use good object oriented programming style (e.g., you must not
duplicate functionality across classes).

3. A limited version of your Iceman class, derived in some way from the base
class described in 1 just above (either directly derived from the base class,
or derived from some other class that is somehow derived from the base
class):

i. It must have a simple constructor and destructor that
initializes/deinitializes the Iceman – see the Iceman section for
more details on where to initially place the Iceman on the screen.

ii. It must have an Image ID of IID_PLAYER.
iii. It (or its base class) must make itself visible via a call to

setVisible(true);
iv. It must have a limited version of a doSomething() method that lets the user

pick a direction by hitting a directional key. If the player hits a directional
key during the current tick, it updates the Iceman’s location to the target
square, removing any Ice objects that overlap with the Iceman’s 4x4 graphic
image. To move the Iceman, all this doSomething() method has to do is
properly adjust the player’s X,Y coordinates using GraphObject’s moveTo()
method and our graphics system will automatically animate its movement it
around the oil field!

v. You may add any public/private methods and private member variables
to your player class as you see fit, so long as you use good object
oriented programming style (e.g., you must not duplicate functionality
across classes).

4. Create a limited version of the StudentWorld class.
i. Add any private member variables to this class required to keep track of all

Ice in the oil field as well as the Iceman object. You may ignore all other
items in the oil field such as Boulders,
Barrels of oil, Protesters, Nuggets, etc. for part #1.

ii. Implement a constructor for this class that initializes all member variables
required for proper gameplay.

iii. Implement a destructor for this class that frees any remaining dynamically
allocated data that has not yet been freed at the time the class is destroyed (e.g.,
the Iceman and all remaining Ice).

iv. Implement the init() method in this class. It must:
1. Create the Iceman object and insert it into the oil field at the right

starting location (see the StudentWorld init() section of this document
for details on the starting location).

2. Creates all of the oil field’s Ice objects and inserts them into a data
structure that tracks active Ice (see the StudentWorld init() section

	

52
	

for details on where to place Ice, and what data structure to use
track all of the remaining Ice in the game).

v. Implement the move() method in your StudentWorld class. During each tick, it
must ask your Iceman object to do something. Your move() method need not
check to see if the Iceman has died or not; you may assume at this point that
the Iceman cannot die. Nor need your move() method deal with any Protesters
or other actors (e.g., Nuggets or Boulders) at this point – just the Iceman.

vi. Implement a cleanup() method that frees any dynamically allocated data that
was allocated during calls to the init() method or the move() method (e.g., it
should delete all your allocated Ice and the Iceman). Note: Your StudentWorld
class must have both a destructor and the cleanUp() method even though they
likely do the same thing.

As you implement these classes, repeatedly build your program – you’ll probably start
out with lots of errors… Relax and try to remove them and get your program to run.

You’ll know you’re done with part 1 when your program builds and does the following:
When it runs and the user hits Enter to begin playing, it displays a oil field filled with Ice
(except for a single open vertical shaft dug down the middle of the oil field) with the
Iceman in its proper starting position in the top-middle of the screen. If your base
class(es) and Iceman class work properly, you should be able to move the Iceman around
the oil field and dig through the Ice using the directional keys.

Note, the Part #1 specification above doesn’t require you to implement any Regular
Protesters, Hardcore Protesters, Boulders, Barrels, etc. (unless you want to). You may
do these unmentioned items if you like but they’re not required for Part 1. However, if
you add additonal functionality, make sure that your Iceman, Ice, and
StudentWorld classes still work properly and that your program still builds and
runs, and meets the requirements stated above for Part #1!

If you can get this simple version working, you’ll have done a bunch of the hard design
work. You’ll probably still have to change your classes a lot to implement the full
project, but you’ll have done most of the hard thinking.

What to Turn In For Part #1

You must turn in your source code for the simple version of your game, which builds
without errors under Visual Studio. You do not have to get it to run under more than
one compiler. You will turn in a zip file containing nothing more than these four files:

Actor.h // contains base, Ice, and Iceman class declarations
// as well as constants required by these classes

Actor.cpp // contains the implementations of these classes
StudentWorld.h // contains your StudentWorld class declaration

	

53
	

StudentWorld.cpp // contains your StudentWorld class implementation

You will not be turning in any other files – we’ll test your code with our versions of the
the other .cpp and .h files. Therefore, your solution must NOT modify any of our files or
you will receive zero credit!

Part #2

After you have turned in your work for Part #1 of Project 2, we will discuss one possible
design for this assignment. For the rest of this project, you are welcome to continue to
improve the design that you came up with for Part #1, or you can use the design we
provide.

In Part #2, your goal is to implement a fully working version of the Iceman game,
which adheres exactly to the functional specification provided in this document.

What to Turn In For Part #2

You must turn in the following files, and ONLY the following files. If you name your
source files with other names, you will be docked points, so be careful!

Actor.h // contains declarations of your actor classes
// as well as constants required by these classes

Actor.cpp // contains the implementation of these classes
StudentWorld.h // contains your StudentWorld class declaration
StudentWorld.cpp // contains your StudentWorld class implementation

report.doc, report.docx, or report.txt // your report

You must turn in a report, check the website for details on what it must include

	

	

54
	

FAQ

Q: The specification is ambiguous. What should I do?
A: Play with our sample program and do what it does. Use our program as a reference.
If the specification is ambiguous and our program is ambiguous, do whatever seems
reasonable and document it in your report. If the specification is ambiguous, but your
program behaves like our demonstration program, YOU WILL NOT LOSE
POINTS!

Q: What should I do if I can’t finish the project?!
A: Do as much as you can, and whatever you do, make sure your code builds! If we can
sort of play your game, but it’s not perfect, that’s better than it not even building!

Q: Can I work with my classmates on this?
A: You can discuss general ideas about the project, but don’t share source code with
anyone.

GOOD LUCK!

